A Neat Solution for the EVM Schedule Problem
August 2010

Bill Locke
bill.locke@att.net
(703)820-6355
EVM - basics

$K

Weeks

SPI = EV / PV
CPI = EV / AC

PMBOK: 7.3.2 Control Costs: Tools and Techniques

PV: budget for work to be performed
EV: budget for work completed
AC: cost of work completed

Prepared by Bill Locke:
bill.locke@att.net; (703)820-6355
EVM – cost performance metrics

- This program is overrun
 - Metrics are good indicators of cost performance
 - Ending metrics indicate “poor” cost performance
- Can predict an estimate at completion from metrics
 - $EAC = \frac{BAC}{CPI_{\text{cum}}}$

Target Completion Date =

CV = EV – AC

CPI = EV / AC
EVM – schedule performance metrics

- This program is late!
- Schedule metrics are misleading
 - Indicate improving schedule after ½ point
 - Indicate “perfect” schedule performance at end
- SV $ = how much time?
- When will the project end?
 - Cannot predict program end with metrics

SV = EV – PV

SPI = EV / PV
Schedule performance – earned schedule (ES)

Week | 1 | 7 | 8 | 10 |
AC | 7 | 52 | 60 | 84 |
EV | 5 | 38 | 43 | 48 |
PV | 6 | 46 | 52 | 71 |

SV($) = EV – PV = 48 – 71 = $ – 23K
SPI($) = EV \[EV \quad PV \] = 48 \[71 \] = 0.68

SV(t) = ES – AT = 7.33 – 10 = – 2.67 weeks
SPI(t) = ES \[ES \quad AT \] = 7.33 \[10 \] = 0.733
Calculate earned schedule (ES)

- PV \text{(Week 7)} < EV < PV \text{(Week 8)}
- ES is into Week 8 of the project baseline
 - Calculate what fraction of Week 8 is earned

\[
ES = 7 + \frac{EV - PV_7}{PV_8 - PV_7} = 7 + \frac{48 - 46}{52 - 46} = 7 + \frac{2}{6} = 7.33
\]
ES-based (time-based) schedule metrics formulas

\[ES = n + \frac{EV - PV_n}{PV_{n+1} - PV_n} \]
where \(n \) is the period when \(PV_n < EV < PV_{n+1} \)

\[PD = \text{original planned duration of project} \]
\[AT = \text{actual time} = \text{time now} \]

Cumulative \(SV(t) = ES - AT \)

Cumulative \(SPI(t) = \frac{ES}{AT} \)

Monthly \(SV(t) = (ES(\text{cum})_{AT} - ES(\text{cum})_{AT-1}) - (AT(\text{cum})_{AT} - AT(\text{cum})_{AT-1}) \)

Monthly \(SPI(t) = \frac{ES(\text{cum})_{AT} - ES(\text{cum})_{AT-1}}{AT(\text{cum})_{AT} - AT(\text{cum})_{AT-1}} \)
PMI NOT-POTY Schedule Metrics

$-based metrics

<table>
<thead>
<tr>
<th>n = weeks from start</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week W1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>$7</td>
<td>$14</td>
<td>$22</td>
<td>$30</td>
<td>$39</td>
<td>$48</td>
<td>$52</td>
<td>$60</td>
<td>$70</td>
<td>$84</td>
<td>$90</td>
<td>$100</td>
<td>$108</td>
<td>$112</td>
<td>$118</td>
<td>$121</td>
<td>$124</td>
<td>$126</td>
</tr>
<tr>
<td>Cumulative EV</td>
<td>0</td>
<td>$5</td>
<td>$10</td>
<td>$16</td>
<td>$22</td>
<td>$28</td>
<td>$34</td>
<td>$38</td>
<td>$43</td>
<td>$48</td>
<td>$57</td>
<td>$69</td>
<td>$76</td>
<td>$80</td>
<td>$83</td>
<td>$88</td>
<td>$94</td>
<td>$98</td>
<td>$98</td>
</tr>
<tr>
<td>Cumulative PV</td>
<td>0</td>
<td>$6</td>
<td>$12</td>
<td>$20</td>
<td>$28</td>
<td>$37</td>
<td>$42</td>
<td>$46</td>
<td>$52</td>
<td>$60</td>
<td>$71</td>
<td>$82</td>
<td>$89</td>
<td>$95</td>
<td>$98</td>
<td>$98</td>
<td>$98</td>
<td>$98</td>
<td>$98</td>
</tr>
<tr>
<td>Monthly SV</td>
<td>0</td>
<td>-$1</td>
<td>-$1</td>
<td>-$2</td>
<td>-$2</td>
<td>-$3</td>
<td>$1</td>
<td>$0</td>
<td>-$1</td>
<td>-$7</td>
<td>-$7</td>
<td>-$2</td>
<td>$5</td>
<td>$1</td>
<td>$3</td>
<td>$5</td>
<td>$6</td>
<td>$4</td>
<td></td>
</tr>
<tr>
<td>Monthly SPI</td>
<td>0.83</td>
<td>0.83</td>
<td>0.75</td>
<td>0.75</td>
<td>0.67</td>
<td>1.20</td>
<td>1.00</td>
<td>0.83</td>
<td>0.13</td>
<td>0.36</td>
<td>0.82</td>
<td>1.71</td>
<td>1.17</td>
<td>1.33</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td></td>
</tr>
<tr>
<td>Cumulative SV</td>
<td>-$1</td>
<td>-$2</td>
<td>-$4</td>
<td>-$6</td>
<td>-$9</td>
<td>-$8</td>
<td>-$9</td>
<td>-$16</td>
<td>-$23</td>
<td>-$25</td>
<td>-$20</td>
<td>-$19</td>
<td>-$18</td>
<td>-$15</td>
<td>-$10</td>
<td>-$4</td>
<td>$0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative SPI</td>
<td>0.83</td>
<td>0.83</td>
<td>0.80</td>
<td>0.79</td>
<td>0.76</td>
<td>0.81</td>
<td>0.83</td>
<td>0.83</td>
<td>0.73</td>
<td>0.68</td>
<td>0.70</td>
<td>0.78</td>
<td>0.80</td>
<td>0.82</td>
<td>0.85</td>
<td>0.90</td>
<td>0.96</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Time-based metrics

Week (W)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18										
ES (weeks)											0.83	1.67	2.50	3.25	4.00	4.67	5.20	6.25	6.50	7.33	8.63	9.82	10.45	10.82	11.14	11.86	12.83	14.00
Monthly SV(t)	-0.17	-0.17	-0.17	-0.25	-0.25	-0.33	-0.47	0.05	-0.75	-0.17	0.29	0.19	-0.36	-0.64	-0.29	-0.02	0.17											
Monthly SPI(t)	0.83	0.83	0.83	0.75	0.75	0.67	0.53	1.05	0.25	0.83	1.29	1.19	0.64	0.36	0.32	0.71	0.98	1.17										
Cumulative SV(t)	-0.17	-0.33	-0.50	-0.75	-1.00	-1.33	-1.80	-1.75	-2.67	-2.38	-2.16	-2.55	-3.18	-3.86	-4.14	-4.17	-4.00											
Cumulative SPI(t)	0.83	0.83	0.83	0.81	0.80	0.78	0.74	0.78	0.72	0.73	0.76	0.82	0.80	0.77	0.74	0.74	0.75	0.76										

Target Completion Date =
PMI NOT-POTY Schedule Metrics (continued)

PMI POTY Cumulative EV & PV

PMI POTY Cumulative SV(t)

Target Completion Date =
Earned Schedule (ES) as a predictor

- When will the project end?

Projected Project Length = \frac{\text{Planned duration}}{\text{Schedule efficiency}} = \frac{PD}{SPI(t)} = \frac{14}{0.733} = 19.1 \text{ weeks}
Earned schedule (ES) is NOT conversion of $ to time

Scenario – 1 task remaining, PV = $12K, estimated completion = 1 month
 \[SV = -$12K \]
 \[SV(t) = -1 \text{ month} \]

1 month later task – still not done!
 \[SV = -$12K \]
 \[SV(t) = -2 \text{ months} \]

2 months later task – still not done!
 \[SV = -$12K \]
 \[SV(t) = -3 \text{ months} \]
ES – analysis

• SV(t) = -2.67 weeks

- Review the IMS
- Determine where SV(t) applies
 - If not on critical path (CP) – no issue!
 - If on CP, discuss impact and recovery plan
Earned Schedule (ES) – takeaways

• ES-based schedule metrics
 • Based on WHEN the work was planned to be done
 • EVM data already available
 • Non-complex calculations
 • Behaves like EVM cost metrics throughout the project
 • No misleading metrics
 • Can project end date

• Material and travel can skew schedule statistics
 • Labor only might provide a better indicator of schedule status

• How does this jive with critical path analysis?
 • You know how many days slip you need to mitigate
Earned Schedule (ES) – recommendation

• Use ES if:
 • Schedule performance on your project is critical
 • Schedule performance is significantly ahead or behind
 • You want to step up your level of communication regarding schedule performance

• Do not use ES if:
 • Schedule performance is stellar
 • ES requires customer education
 • Do not give customer something to shoot at
Earned schedule references

• “Schedule is Different”; Walter Lipke; Software Division; Oklahoma City Air Logistics Center; March 2003

• “Not your Father’s Earned Value”; Ray Stratton; February 2005

• http://www.earnedschedule.com/

• Acknowledgement: PMIWDC August 2009 Fairview Park Luncheon