EARNED SCHEDULE

AN EVOLUTION OF EARNED VALUE MANAGEMENT

Walt Lipke
PMI® - Oklahoma City
+1 405 364 1594
waltlipke@cox.net
www.earnedschedule.com
Abstract

Earned Schedule is an extension to Earned Value Management. The method provides considerable capability to project managers for analysis of schedule performance. From the time of the public’s first view of Earned Schedule, its propagation and uptake around the world has been extraordinary. This presentation will cover the capabilities, affirmation, and resources available supporting the practice.
Planning

“Planning is an unnatural process; it is much more fun to do something. The nicest thing about not planning is that failure comes as a complete surprise, rather than being preceded by a period of worry and depression.”

-Sir John Harvey-Jones
Overview

- Description
- Computation
- Capabilities
- Affirmation
- Resources
- Summary

The ES idea is to determine the time at which the EV accrued should have occurred.
DESCRIPTION
EVM Schedule Indicators

EVM = Earned Value Management

CPI = \(\frac{EV}{AC} \)

SPI = \(\frac{EV}{PV} \)

PV = Planned Value
EV = Earned Value
AC = Actual Cost
BAC = Budget at Completion
PD = Planned Duration

Something’s wrong!!

SV = EV – PV

SV = Earned Value - Planned Value

CV = CV = CPI - 1

Time

\$\$
The idea is to determine the time at which the EV accrued should have occurred.

For the above example, ES = 5 months …that is the time associated with the PMB at which PV equals the EV accrued at month 7.
Earned Schedule Concept

• Formula

 \[ES = C + I \]

 where: \(C \) = number of time increments for \(EV \geq PV \)
 \[I = \frac{(EV - PV_C)}{(PV_{C+1} - PV_C)} \]

• Indicators

 • Schedule Variance: \(SV(t) = ES - AT \)

 • Schedule Performance Index: \(SPI(t) = ES / AT \)
ES COMPUTATION
ES Computation Example

\[
SPI(\$) = \frac{EV}{PV}
\]
\[
SV(\$) = EV - PV
\]
\[
SPI(t) = \frac{ES}{AT}
\]
\[
SV(t) = ES - AT
\]

Projection of EV onto PV

Time-Based Schedule Indicators

\[
ES = \text{All of May + Portion of June}
\]
\[
= 5 + \frac{EV - PV(\text{May})}{PV(\text{June}) - PV(\text{May})}
\]
\[
AT = 7
\]
ES Computation Example

Earned Schedule requires the:
1) PMB; and
2) Accrued EV for calculation.
The equation is: \(ES = C + I \)

The first step is to determine \(C \).
The value of \(C \) is found by counting the number of the PMB time increments for \(EV \geq PV_n \).

In this example the count is from January through May.
\(C = 5 \) (months).

\[EV = \text{All of May + Portion of June} \]
\[ES = 5 + \frac{EV - PV(May)}{PV(June) - PV(May)} \]
\[AT = 7 \]
Thus far, ES = 5 + I (months). In the small box at the lower right, is the equation for calculating I. For the example, let
1) EV = 100
2) PV₅ (May) = 90
3) PV₆ (June) = 110.

Let’s calculate I:
I = (100 – 90) / (110 – 90) = 0.5

ES = 5 + 0.5 = 5.5 (months)

From ES (5.5 months) we can now calculate the ES indicators: SV(t) and SPI(t).

The EV is reported at Actual Time AT = 7, the end of July.

SV(t) = 5.5 – 7 = - 1.5 months

SPI(t) = 5.5 / 7 = 0.79
Earned Schedule Calculator

ES Calculator
Capabilities

• Reliable indicators – SV(t) & SPI(t)
 • True performance at completion

EVM schedule indicators fail for late performing projects
Capabilities

- Forecasting
 - Duration & completion date
 - Always converges to actual result
Capabilities

• Prediction
 • To Complete Schedule Performance Index (TSPI)
 • Answers question – “Is completion at (time) achievable?”
Capabilities

- Critical Path
- Comparison of project and CP performance

<table>
<thead>
<tr>
<th>Indicator</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP</td>
<td>xxx</td>
<td>xxx</td>
<td>0.800</td>
<td>0.800</td>
<td>0.827</td>
<td>0.771</td>
<td>0.900</td>
<td>0.838</td>
<td>0.727</td>
<td>0.900</td>
<td>0.750</td>
<td>0.600</td>
<td>1.000</td>
</tr>
<tr>
<td>CPIc</td>
<td>xxx</td>
<td>xxx</td>
<td>0.800</td>
<td>0.800</td>
<td>0.818</td>
<td>0.804</td>
<td>0.818</td>
<td>0.822</td>
<td>0.812</td>
<td>0.816</td>
<td>0.810</td>
<td>0.805</td>
<td>0.808</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td></td>
</tr>
<tr>
<td>SPl(t)c</td>
<td>0.000</td>
<td>0.800</td>
<td>1.466</td>
<td>1.314</td>
<td>0.775</td>
<td>0.450</td>
<td>0.975</td>
<td>0.700</td>
<td>0.450</td>
<td>1.950</td>
<td>0.500</td>
<td>0.600</td>
<td></td>
</tr>
<tr>
<td>CPIc</td>
<td>xxx</td>
<td>xxx</td>
<td>0.000</td>
<td>0.400</td>
<td>0.762</td>
<td>0.900</td>
<td>0.875</td>
<td>0.804</td>
<td>0.829</td>
<td>0.813</td>
<td>0.772</td>
<td>0.890</td>
<td>0.855</td>
</tr>
<tr>
<td>SPlp</td>
<td>0.000</td>
<td>0.800</td>
<td>0.457</td>
<td>1.433</td>
<td>0.675</td>
<td>0.600</td>
<td>1.550</td>
<td>3.200</td>
<td>0.900</td>
<td>3.000</td>
<td>xxx</td>
<td>xxx</td>
<td></td>
</tr>
<tr>
<td>SPIc</td>
<td>xxx</td>
<td>xxx</td>
<td>0.000</td>
<td>0.400</td>
<td>0.444</td>
<td>0.840</td>
<td>0.783</td>
<td>0.745</td>
<td>0.842</td>
<td>0.912</td>
<td>0.911</td>
<td>0.968</td>
<td>0.984</td>
</tr>
<tr>
<td>IEAC(t)</td>
<td>xxx</td>
<td>xxx</td>
<td>25.00</td>
<td>13.13</td>
<td>11.11</td>
<td>11.43</td>
<td>12.44</td>
<td>12.07</td>
<td>12.31</td>
<td>12.95</td>
<td>11.24</td>
<td>11.70</td>
<td>12.00</td>
</tr>
<tr>
<td>Critical</td>
<td></td>
</tr>
<tr>
<td>Path 1-4-6-10</td>
<td></td>
</tr>
<tr>
<td>CRP</td>
<td>xxx</td>
<td>xxx</td>
<td>0.800</td>
<td>0.800</td>
<td>0.833</td>
<td>0.600</td>
<td>0.800</td>
<td>0.667</td>
<td>0.800</td>
<td>0.667</td>
<td>xxx</td>
<td>0.714</td>
<td></td>
</tr>
<tr>
<td>CPIc</td>
<td>xxx</td>
<td>xxx</td>
<td>0.800</td>
<td>0.800</td>
<td>0.815</td>
<td>0.781</td>
<td>0.781</td>
<td>0.787</td>
<td>0.763</td>
<td>0.763</td>
<td>0.763</td>
<td>0.753</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td></td>
</tr>
<tr>
<td>SPl(t)c</td>
<td>0.000</td>
<td>0.800</td>
<td>1.600</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>0.000</td>
<td>1.700</td>
<td>1.300</td>
<td>0.000</td>
<td>2.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPIc</td>
<td>xxx</td>
<td>xxx</td>
<td>0.000</td>
<td>0.400</td>
<td>0.800</td>
<td>1.100</td>
<td>1.000</td>
<td>0.833</td>
<td>0.957</td>
<td>1.000</td>
<td>0.889</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>SPlp</td>
<td>xxx</td>
<td>xxx</td>
<td>0.000</td>
<td>0.800</td>
<td>1.600</td>
<td>2.000</td>
<td>2.000</td>
<td>0.000</td>
<td>1.200</td>
<td>1.600</td>
<td>0.000</td>
<td>2.000</td>
<td></td>
</tr>
<tr>
<td>SPIc</td>
<td>xxx</td>
<td>xxx</td>
<td>0.000</td>
<td>0.400</td>
<td>0.800</td>
<td>1.100</td>
<td>1.000</td>
<td>0.833</td>
<td>0.925</td>
<td>1.000</td>
<td>0.900</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>IEAC(t)</td>
<td>xxx</td>
<td>xxx</td>
<td>25.00</td>
<td>12.50</td>
<td>9.09</td>
<td>10.00</td>
<td>12.00</td>
<td>10.45</td>
<td>10.00</td>
<td>11.25</td>
<td>10.00</td>
<td>xxx</td>
<td>xxx</td>
</tr>
</tbody>
</table>
Capabilities

• Detail Analysis – Schedule Adherence
 • Identifies out of sequence performance
 • Isolates tasks - constraints/impediments & rework
 • Facilitates calculations - SA metric & rework forecast
Capabilities

- Discontinuous performance – stop work & downtime
 - Accommodates and improves forecasting
Capabilities

- Schedule Topology
 - Longest path concept improves forecasts for parallel networks
Earned Schedule Terminology

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Earned Schedule</th>
<th>ES<sub>cum</sub></th>
<th>ES = C + I number of periods (C), EV ≥ PV<sub>C</sub> plus an incomplete portion (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Time</td>
<td>AT<sub>cum</sub></td>
<td>AT = number of periods executed</td>
<td></td>
</tr>
<tr>
<td>Indicators</td>
<td>SV(t)</td>
<td>SV(t) = ES − AT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SV(t)%</td>
<td>SV(t)% = (ES − AT) / ES</td>
<td></td>
</tr>
<tr>
<td>Schedule Performance Index</td>
<td>SPI(t)</td>
<td>SPI(t) = ES / AT</td>
<td></td>
</tr>
<tr>
<td>Predictor</td>
<td>To Complete Schedule Performance Index</td>
<td>TSPI</td>
<td>TSPI = (PD − ES) / (PD − AT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TSPI = (PD − ES) / (ED − AT)</td>
</tr>
<tr>
<td>Forecasts</td>
<td>IEAC(t)</td>
<td>IEAC(t) = PD / SPI(t)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VAC(t)</td>
<td>VAC(t) = PD − IEAC(t) or ED</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEAC(t) = AT + (PD − ES) / PF(t)</td>
<td></td>
</tr>
</tbody>
</table>
AFFIRMATION
Affirmation

• Simple theory
• Initial prototype
• Independent confirmation
 • Trials
 • Testing
 • Usage
• EVM Tools
• Educators/Researchers
• Standards & Guides
• Awards
Affirmation

• Simple theory
• Initial prototype
• Independent confirmation
 • Trials

“The retrospective analysis of ES using my own EVM projects’ data, ... has confirmed with remarkable precision the accuracy of the ES concept and ES metrics ... when compared to their historic EVM counterparts.”

• Awards
Affirmation

- Simple theory
 “The results reveal that the earned schedule method outperforms, on the average, all other forecasting methods.”
 - Vanhoucke & Vandevoorde (2007)

- Testing
 “This research finds Earned Schedule to be a more timely and accurate predictor than Earned Value Management.”
 - Capt. Kevin Crumrine (2013)

- Standards & Guides
- Awards
Affirmation

Evidence of Earned Schedule Usage

Application

<table>
<thead>
<tr>
<th>USA</th>
<th>Lockheed-Martin</th>
<th>Boeing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Booze-Alen-Hamilton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Government & Defense</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>Private & Defense</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>Network Rail & Defense</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>Fabricom (GDF-SUEZ)</td>
<td></td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>Petroleum Development</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Building Construction</td>
<td></td>
</tr>
</tbody>
</table>

Projects are generally extremely large, running for a decade or more and costing in excess of $1 Billion.

University Coursework

<table>
<thead>
<tr>
<th>USA</th>
<th>George Washington University, Drexel, University of Houston, University of Nevada (Reno), West Virginia University, Pennsylvania State University</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-USA</td>
<td>University of Ghent (Belgium), Australian National University</td>
</tr>
</tbody>
</table>

Books

<table>
<thead>
<tr>
<th>USA</th>
<th>Earned Schedule by Walter H. Lipke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project Management Theory and Practice by Dr. Gary L. Richardson</td>
</tr>
<tr>
<td></td>
<td>The Earned Value Maturity Model by Ray W. Stratton</td>
</tr>
<tr>
<td></td>
<td>A Practical Guide to Earned Value Management, 2nd Edition by Charles & Charlene Budd</td>
</tr>
<tr>
<td></td>
<td>Project Management Achieving Competitive Advantage by Jeffrey K. Pinto</td>
</tr>
<tr>
<td></td>
<td>Practice Standard for Earned Value Management by Project Management Institute</td>
</tr>
<tr>
<td>non-USA</td>
<td>Measuring Time: Improving Project Performance Using Earned Value Management by Dr. Mario Vanhoucke</td>
</tr>
<tr>
<td></td>
<td>Earned Schedule – an emerging Earned Value technique issued by UK APM EVM SIG</td>
</tr>
</tbody>
</table>

2019 Oklahoma Engineering Conference

Copyright © Lipke 2019
Affirmation

- Simple theory
 - PMI Practice Standard for EVM
 - PMI Project Management Body of Knowledge
 - PMI Practice Standard for Scheduling (pending)
 - NDIA Predictive Measures Guide
 - NDIA Planning and Scheduling Excellence Guide
 - ISO Standard for EVM
 - Australian Standard for EVM (in work)

- Standards & Guides
- Awards
Affirmation

• Simple theory
• Initial prototype
• Independent confirmation
• Trials
• Testing
• Usage

• EVM Tools
• Educators/Researchers
• Standards & Guides
• Awards

2019 Oklahoma Engineering Conference

PMI Practice Standard for EVM
PMI Project Management Body of Knowledge
PMI Practice Standard for Scheduling (pending)
NDIA Predictive Measures Guide
NDIA Planning and Scheduling Excellence Guide
ISO Standard for EVM
Australian Standard for EVM (in work)
RESOURCES
Resources

• Earned Schedule Website
 http://www.earnschedule.com/
 • Papers, Presentations, Calculators, Terminology, ….

• Standards & Guides

• *Earned Schedule* book (English, Japanese, Portuguese, Spanish)
 • Print
 • ePub (Nook & iPad)
 • Kindle
 • PDF
Resources

• To Begin ... use the website
 • View the “Introduction Video”
 • Download and read two articles
 • “Schedule is Different”
 • “Further Developments in Earned Schedule”

• Scan the Calculators ... experiment with them
 • ES Calculator (v1b)
 • P-Factor Calculator
 • Statistical Forecasting Calculator
 • SA Index & Rework Calculator
 • Prediction Analysis Calculator
Contacts

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walt Lipke</td>
<td>USA</td>
<td>waltlipke@cox.net</td>
</tr>
<tr>
<td>Kym Henderson</td>
<td>Australia</td>
<td>kym.henderson@gmail.com</td>
</tr>
<tr>
<td>Mario Vanhoucke</td>
<td>Belgium</td>
<td>mario.vanhoucke@ugent.be</td>
</tr>
<tr>
<td>Stephen Vandevoorde</td>
<td>Belgium</td>
<td>stephen.vandevoorde@fabricom-gdfsuez.com</td>
</tr>
<tr>
<td>Alex Davis</td>
<td>UK</td>
<td>alex.davis@uwclub.net</td>
</tr>
<tr>
<td>Robert Van De Velde</td>
<td>Canada</td>
<td>vandev@primus.ca</td>
</tr>
<tr>
<td>Kotaro Mizuno</td>
<td>Japan</td>
<td>kmamizuno@nifty.com</td>
</tr>
<tr>
<td>Paulo André de Andrade</td>
<td>Brazil</td>
<td>pandre@techisa.srv.br</td>
</tr>
<tr>
<td>Diego Navarro</td>
<td>Spain</td>
<td>dnavarro@armell.com</td>
</tr>
</tbody>
</table>
SUMMARY
Summary

• Derived from EVM data … only
• Provides time-based schedule indicators
• Indicators do not fail for late finish projects
• Application is scalable up/down, just as is EVM
• Schedule forecasting & analysis is better than any other EVM method presently used
 • SPI(t) & SV(t) behave similarly to CPI & CV
 • IEAC(t) = PD / SPI(t) behaves similarly to IEAC = BAC / CPI
Summary

• Schedule performance analysis – much easier and possibly better than “bottom-up” methods
• Application is growing in both small and large projects
• Practice recognized in Standards & Guides
• Resource availability enhanced with ES website and Wikipedia
• Research indicates ES superior to other methods

Hopefully you are encouraged to – Give ES a try!
Thank You!!