Earned Schedule Leads to Improved Forecasting

Walt Lipke
waltlipke@cox.net
(405) 364-1594

Copyright © 2005 Lipke
Purpose

To discuss the application of *Earned Schedule* to schedule and cost prediction
Overview

• *Earned Schedule* Review
• Prediction Study
• Network Schedule Analysis
• Earned Value Research
• Concept of *Effective Earned Value*
• Forecasting with Effective EV
• Summary
Earned Schedule Concept
So, what’s the problem?

- Traditional schedule EVM metrics are good at beginning of project
 - Show schedule performance trends
- But the metrics don’t reflect real schedule performance at end
 - Eventually, all “budget” will be earned as the work is completed, no matter how late you finish
 - **SPI improves and ends up at 1.00 at end of project**
 - **SV improves and ends up at $0 variance at end of project**
So, what’s the problem?

- Traditional schedule metrics lose predictive ability over the last third of the project
 - Impacts schedule predictions, EAC predictions

- **Project managers don’t understand schedule performance in terms of budget**

 …Like most of us!
Earned Schedule Concept

SPI($) = \frac{BCWP}{BCWS}

SV($) = BCWP - BCWS

SPI(t) = \frac{ES}{AT}

SV(t) = ES - AT

Projection of BCWP onto BCWS

ES = All of May + Portion of June
ES = 5 + \frac{BCWP($) - BCWS(May)}{BCWS(June) - BCWS(May)}

AT = 7

Copyright 2003 Lipke
Earned Schedule: The Formulae

- **ES\textsubscript{cum}** is the:

 Number of completed BCWS time increments BCWP exceeds + the fraction of the incomplete BCWS increment

- **ES\textsubscript{cum}** = C + I where:

 \(C = \text{number of time increments for } BCWP \geq BCWS \)

 \(I = \frac{(BCWP - BCWS\textsubscript{C})}{(BCWS\textsubscript{C+1} - BCWS\textsubscript{C})} \)

- **ES\text{period}(n) = ES\text{cum}(n) - ES\text{cum}(n-1) = \Delta ES\textsubscript{cum}**
Earned Schedule Indicators

- **Key Points:**
 - ES Indicators constructed to behave in an analogous manner to the EVM Cost Indicators, CV and CPI
 - SV(t) and SPI(t) are not constrained by BCWS calculation reference
 - SV(t) and SPI(t) provide duration based measures of schedule performance
Table of Formulas

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Earned Schedule</th>
<th>ES<sub>cum</sub></th>
<th>ES = C + I number of complete periods (C) plus an incomplete portion (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Time</td>
<td>AT<sub>cum</sub></td>
<td>AT = number of periods executed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indicators</th>
<th>SV(t)</th>
<th>SV(t) = ES - AT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule Performance Index</td>
<td>SPI(t)</td>
<td>SPI(t) = ES / AT</td>
</tr>
<tr>
<td>To Complete Schedule</td>
<td>TSPI(t)</td>
<td>TSPI(t) = (PD – ES) / (PD – AT)</td>
</tr>
<tr>
<td>Performance Index</td>
<td></td>
<td>TSPI(t) = (PD – ES) / (ED – AT)</td>
</tr>
</tbody>
</table>

Predictors	IEAC(t)	IEAC(t) = PD / SPI(t)
Independent Estimate at		IEAC(t) = AT + (PD – ES) / PF
Completion (time)		

Copyright 2005 Lipke
Application Results
ES Applied to Real Project Data:
Late Finish Project: SV($) and SV(t)

Commercial IT Infrastructure Expansion Project Phase 1
Cost and Schedule Variances
at Project Projection: Week Starting 15th July xx

CV cum SV cum Target SV & CV SV (t) cum

Stop wk 19 Sched wk 20 Re-start wk 26
Duration Prediction
IEAC(t) Predictions using pre ES Techniques:
Early and Late Finish Project Examples

IEAC(t) Metrics at Project Completion

<table>
<thead>
<tr>
<th></th>
<th>Early Finish Project</th>
<th>Late Finish Project - pre ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Duration (weeks)</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Actual Time (weeks)</td>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>Percentage Complete cum</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>CPI cum</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>SPI(t) cum</td>
<td>1.14</td>
<td>0.59</td>
</tr>
<tr>
<td>SPI($) cum</td>
<td>1.17</td>
<td>1.00</td>
</tr>
<tr>
<td>Critical Ratio cum</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>IEAC(t) PD/SPI(t) cum</td>
<td>22.0</td>
<td>34.0</td>
</tr>
<tr>
<td>IEAC(t) PD/SPI($) cum</td>
<td>21.4</td>
<td>20.0</td>
</tr>
<tr>
<td>IEAC(t) PD/CR cum</td>
<td>10.3</td>
<td>38.7</td>
</tr>
</tbody>
</table>

• In both examples, the pre ES predictors (in red) fail to correctly calculate the Actual Duration at Completion!
• The ES predictor, SPI(t) alone correctly calculates the Actual Duration at Completion in both cases
Schedule Analysis
Schedule Analysis with EVM?

• The general belief is EVM cannot be used to predict schedule duration
• Most practitioners analyze schedule from the bottom up using the networked schedule“It is the only way possible.”
 – Analysis of the Schedule is overwhelming
 – Critical Path is used to shorten analysis
 (CP is longest path of the schedule)
• Duration prediction using Earned Schedule provides a macro-method similar to the method for estimating Cost
 – a significant advance in practice
• But, there’s more that ES facilitates
Earned Schedule

Bridges EVM to “Real” Schedule

Copyright 2004 Lipke
How Can This Be Used?

• **Tasks behind** – possibility of impediments or constraints can be identified

• **Tasks ahead** – a likelihood of future rework can be identified

• The identification is independent from schedule efficiency

• The identification can be automated

• **PMs can now have a schedule analysis tool connected to the EVM Data!!**
Earned Value Research
Earned Value Research

• Most research conducted since 1990
 – Result of cancellation of Navy A-12 Avenger
 – Primary researcher, Dr. David Christensen, Southern Utah University
 – Cost studies using very large DOD projects

• EVM Literature on Dr. Christensen’s website http://www.suu.edu/faculty/christensend/ev-bib.html
Results from EV Research

- Dr. Christensen’s & associates’ findings
 - CPI stabilizes @ 20% complete
 - CPI tends to worsen as $\text{EV} \Rightarrow \text{BAC}$
 - $|\text{CPI}\text{(final)} - \text{CPI}(20\%)| \leq 0.10$
 - IEAC = $\frac{\text{BAC}}{\text{CPI}} \leq \text{Final Cost}$

when Percent Complete is 20% $\Leftrightarrow 100\%$
Research Discussion

- **CPI** tends to worsen as **EV** ⇒ **BAC**
- **IEAC = BAC / CPI ≤ Final Cost**
 when Percent Complete is 20% ↔ 100%
- **IEAC condition must be true if CPI tendency is true**
- **Rationale supporting CPI tendency**
 - Rework increasing as **EV** approaches **BAC**
 - Late occurring impacts from constraints/impediments
 - Lack of available **EV** toward end of project
- **My conjecture:** **SPI(t) & IEAC(t) = PD / SPI(t) behave similarly to CPI & IEAC = BAC / CPI**
CPI & IEAC Behavior

CPIcum versus Percent Complete

IEAC Behavior

Percent Difference

Percent Complete

Percent Complete

Percent Complete
Concept:
Effective Earned Value
Earned Schedule

Bridges EVM to “Real” Schedule

Copyright 2004 Lipke
• EV isn’t connected to task sequence
 – Hypothesis: Completion sequence of tasks affects performance efficiency
• Incorrect task sequencing occurs when there is …
 – Impediment or constraint
 – Poor process discipline
• Improper performance sequence may cause …
 – Overloading of constraint
 – Performance of tasks w/o complete inputs
Effective Earned Value

• Result from improper performance sequence …
 – Constraint limited output
 • Schedule lengthens
 • Cost increases while waiting (when other EV available is severely limited)
 – Rework occurs (~ 50%)
 • Schedule lengthens
 • Cost escalates
• Constraint problem & Rework appear late causing …
 – CPI & \(SPI(t) \) to decrease as EV \(\Rightarrow \) BAC
Effective Earned Value

- **Schedule Adherence** measure is used to enhance the EVM measures
 - Early warning for later cost and schedule problems
 - **Proposed Measure:** *In accordance with the project plan, determine the tasks which should be completed or started for the duration associated with ES. Compare the associated PV with the EV of the tasks which directly correspond. Calculate the ratio:*

 \[
P = \frac{\text{Tasks (perf - corr)}}{\text{Tasks (plan)}} = \frac{\sum \text{EV}_j (corresponding)}{\sum \text{PV}_j (plan)}
\]

 where \(\sum \text{EV}_j \leq \sum \text{PV}_j \) & \(\sum \text{PV}_j = \text{EV} \)
Effective Earned Value

- Characteristics of the P measure
 - \(P \) measure cannot exceed 1.0
 \[0 \leq P \leq 1.0 \]
 - At project completion \(P = 1.0 \)
 - \(P \) is likely unstable until project is 20% complete
 \{similar to the behavior of CPI\}

- \(P \) used to compute effective earned value \{EV(e)\}
Effective Earned Value

Effective EV

$\Sigma EV_j \leftrightarrow PV \@ ES$

Total EV

EV(r) is performed at risk of creating rework
Portion colored □ is usable
Portion colored ■ is unusable
Effective Earned Value

• Effective earned value is a function of EV, P, and Rework

\[EV(e) = f (EV, P, Rework) \]

• \[EV(e) = \left[\frac{1 + P \times R\%}{1 + R\%} \right] \times EV \]
 where \(R\% \) (Rework Percent) = fraction of \(EV(r) \) unusable / fraction of \(EV(r) \) usable \{ \(EV(r) = \sum PV_j - \sum EV_j \) \}

• \[EV(e) = \left[\frac{P + 2}{3} \right] \times EV \]
 when \(R\% = 50\% \)
Effective Earned Value

- Effective ES is computed using EV(e) {i.e., ES(e)}
- Effective EV indicators are …
 - CV(e) = EV(e) – AC
 - CPI(e) = EV(e) / AC
 - SV(te) = ES(e) – AT
 - SPI(te) = ES(e) / AT

- The behavior of P may explain Dr. Christensen’s findings for CPI & IEAC
Graphs of CPI, CPI(e) & P - Factor (notional data)
Graphs of CPI & SPI(t) with the P - Factor
Summary: Effective Earned Value

- Lack of adherence to the schedule causes EV to misrepresent project progress
- P indicator introduced to measure schedule adherence
- Effective EV calculable from P, R% and EV reported
- Prediction for both final cost and project duration hypothesized to be improved with Effective Earned Value
Forecasting with Effective Earned Value
Forecasting with Effective Earned Value

<table>
<thead>
<tr>
<th>Schedule Prediction</th>
<th>IEAC(te) = PD / SPI(te)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Prediction</td>
<td>IEAC(e) = BAC / CPI(e)</td>
</tr>
</tbody>
</table>

Copyright 2004 Lipke
Schedule & Cost Prediction

Cost Forecast Comparison

- **BAC = $1,000,000**
- **IEAC(e)**
- **IEAC**

Schedule Forecast Comparison

- **PD = 36 months**
- **IEAC(te)**
- **IEAC(t)**
Summary
Summary

• ES derived from EVM data … only
• Indicators do not fail for late finish projects
• Schedule prediction is better than any other EVM method presently used
• Application is scalable up/down, just as is EVM
• Facilitates bridging EVM to the schedule
• Leads to Schedule Adherence & Effective Earned Value, and …

• Improved Cost & Schedule Forecasting
References

• “Schedule is Different,” *The Measurable News*, March & Summer 2003 [Walt Lipke]

Click “Education,” then “Presentations and Papers” for .pdf copies
Contact Information

Walt Lipke

Address: 1601 Pembroke Drive
Norman, OK 73072

Phone: (405) 364-1594

Email: waltlipke@cox.net