Earned Schedule

Project Duration Forecasting Advancements

Walt Lipke
PMI - Oklahoma City
+1 405 364 1594
waltlipke@cox.net
www.earnedschedule.com
Abstract

Project duration forecasting has been enhanced with the introduction and application of the techniques derived from Earned Schedule (ES). The computed forecast results from ES have been shown to be better than any other Earned Value Management based method using both real and simulated performance data. Even so, research has shown that as the topology of the network schedule becomes more parallel, the accuracy of the ES forecast worsens. Recently, forecast accuracy improvement has been achieved for highly parallel type schedules with the method of Earned Schedule-Longest Path. This presentation proposes further advancement to the longest path approach through anomaly rejection and the application of simple statistical methods.
Objective

- Understand how ES is derived from EVM data, and its facility for schedule analysis & forecasting
- Know why Longest Path (LP) improves ES forecasting
- Learn how to identify LP forecast anomalies
- Understand and apply statistical forecasting
- Know how to use LP to make statistical forecasts
Overview

• Introduction
• Notional Data / Path Performance
• Longest Path Forecasting
• ES Requirement/ Anomaly Identification
• Improved ES-LP Forecasting
• Statistical Forecasting with improved ES-LP
• Wrap Up
Introduction

Earned Schedule
Introduction / Earned Schedule

- EVM schedule indicators fail for late performing projects
- Earned Schedule overcomes the problem and has been shown to be the best of all EVM-based methods for providing reliable management information – indicators & forecasts
- ES formulas - indicator & forecast
 - SPI(t) = ES / AT
 - IEAC(t) = PD / SPI(t)

where
 - AT = Actual Time – duration from start to now
 - SPI(t) = Schedule Performance Index (time-based)
 - PD = Planned Duration
 - IEAC(t) = Independent Estimate at Completion (time-based)
Introduction / Earned Schedule

The ES idea is to determine the time at which the EV accrued should have occurred.

\[PV_{\text{cum}} = EV_{\text{cum}} \]

Time based schedule performance efficiency: \(SPI(t) = \frac{ES}{AT} \)
Introduction / Earned Schedule

The ES idea is to determine the time at which the EV accrued should have occurred.

SPI(t) = ES / AT

IEAC(t) = PD / SPI(t)

Time based schedule performance efficiency: SPI(t) = ES / AT
Introduction / Earned Schedule

- Analysis Capabilities
 - Performance Indicators \((\text{Variance, Efficiency})\) – \(SV(t), SPI(t)\)
 - Forecasting \((\text{Duration, Completion Date})\) – \(IEAC(t)\)
 - Prediction \((\text{Likely, Recover, Unlikely})\) – \(TSPI\)
 - Critical Path Analysis \((\text{Compare CP vs Project})\)
 - Schedule Adherence \((\text{portion of EV matching PV})\) – \(p\)-factor
 - Identification of Constraints/Impediments & Rework
 - Rework Forecast & Schedule Adherence Index
 - Effective EV \((\text{portion of EV not associated with rework})\)
 - Analysis of discontinuous performance \((\text{stop work & down time})\)
 - Longest Path \((\text{improved forecasting})\)
Introduction/ ES Affirmation

- Simple theory
- Initial prototype
- Independent confirmation
 - Trials
 - Testing
- Global Use
- EVM Tools
- Educators/Researchers
- Application Standards
- Awards
Introduction/ ES Affirmation

- Simple theory
- Initial prototype
- Independent confirmation
 - Trials

“The retrospective analysis of ES using my own EVM projects’ data, … has confirmed with remarkable precision the accuracy of the ES concept and ES metrics … when compared to their historic EVM counterparts.”

Educators/ Researchers

- Application Standards
- Awards
Introduction/ ES Affirmation

• Simple theory

“The results reveal that the earned schedule method outperforms …all other forecasting methods.”
- Vanhoucke & Vandevoorde (2007)

• Testing

“This research finds Earned Schedule to be a more timely and accurate predictor than Earned Value Management.”
- Capt. Kevin Crumrine (2013)

• Application Standards

• Awards
Introduction

Longest Path
Introduction / Longest Path

- Belgian researcher, Dr. Mario Vanhoucke, determined –

ES forecasting becomes less reliable as the topology of the schedule becomes increasingly parallel.

- Proposed solution –

Compute forecasts for all serial paths in the schedule. The longest duration forecast is taken to best represent the project.
Introduction / Longest Path

Diagram showing a network of nodes and edges.
Introduction

Statistical Forecasting
Introduction / Statistical Forecasting

- Most likely forecast: \(\text{IEAC}(t) = \text{PD} / \text{SPI}(t) \) …using the cumulative value of the index
- Confidence Limits are computed to determine the upper and lower forecast values …within which with 90% probability (for example) is the actual final duration
- Variation is required to make the calculation …i.e. the standard deviation
- Periodic values of \(\text{SPI}(t) \) are used to compute the standard deviation
Introduction / Statistical Forecasting

- $\text{CL}_{(+/-)} = \ln \text{SPI}(t)_c \pm Z \times \sigma_m \times AF$

 where
 - $\text{CL} = \text{Confidence Limit}$
 - $\ln \text{SPI}(t)_c = \text{logarithm of the cumulative value of SPI}(t)$
 - $Z = \text{the prescribed Confidence Level (usually 90 percent)}$
 - $\sigma_m = \sigma / \sqrt{n}, \text{the standard deviation of the sample means}$
 - $\sigma = \text{the standard deviation for values of ln SPI}(t)_p$
 - $n = \text{the number of periodic values}$
 - $AF = \sqrt{((\text{PD} - \text{ES}) / (\text{PD} - \text{ES}/n))}, \text{the adjustment for finite population}$

- $\text{IEAC}(t)_{(+/-)} = \text{PD} / e^{\text{CL}_{(-/+)}}$

 where
 - $e = \text{base number for natural logarithms}$
Application to Notional Data

- Notional Data
- Longest Path Forecast
- Graphical Comparison – LP vs Total Project
- Anomaly Recognition
- Improved Forecast
- Statistical Forecast from ES-LP
- Statistical Forecast Comparisons
Notional Data / Path Performance

<table>
<thead>
<tr>
<th>Performance Path</th>
<th>Period</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4-8-10</td>
<td>Pvp</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Evp</td>
<td>XX</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pvc</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evc</td>
<td>XX</td>
<td>4</td>
<td>12</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>37</td>
<td>45</td>
<td>45</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4-8-10</td>
<td>Pvp</td>
<td>XX</td>
<td>XX</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Evp</td>
<td>XX</td>
<td>XX</td>
<td>3</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pvc</td>
<td>XX</td>
<td>XX</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evc</td>
<td>XX</td>
<td>XX</td>
<td>3</td>
<td>14</td>
<td>20</td>
<td>20</td>
<td>32</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5-9</td>
<td>Pvp</td>
<td>XX</td>
<td>XX</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evp</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>12</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pvc</td>
<td>XX</td>
<td>XX</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evc</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>12</td>
<td>18</td>
<td>23</td>
<td>25</td>
<td>25</td>
<td>29</td>
<td>34</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>3-8-10</td>
<td>Pvp</td>
<td>XX</td>
<td>XX</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evp</td>
<td>XX</td>
<td>XX</td>
<td>8</td>
<td>13</td>
<td>9</td>
<td>0</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pvc</td>
<td>XX</td>
<td>XX</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>35</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evc</td>
<td>XX</td>
<td>XX</td>
<td>8</td>
<td>21</td>
<td>30</td>
<td>30</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-10</td>
<td>Pvp</td>
<td>XX</td>
<td>XX</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>XX</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evp</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>13</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pvc</td>
<td>XX</td>
<td>XX</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>XX</td>
<td>55</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evc</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>8</td>
<td>17</td>
<td>24</td>
<td>37</td>
<td>45</td>
<td>50</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-9</td>
<td>Pvp</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Evp</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pvc</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evc</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>19</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Total Project</td>
<td>Pvp</td>
<td>5</td>
<td>5</td>
<td>35</td>
<td>30</td>
<td>35</td>
<td>25</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evp</td>
<td>XX</td>
<td>4</td>
<td>16</td>
<td>43</td>
<td>27</td>
<td>18</td>
<td>31</td>
<td>16</td>
<td>9</td>
<td>15</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Pvc</td>
<td>5</td>
<td>10</td>
<td>45</td>
<td>75</td>
<td>110</td>
<td>135</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>185</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evc</td>
<td>XX</td>
<td>4</td>
<td>20</td>
<td>63</td>
<td>90</td>
<td>108</td>
<td>139</td>
<td>155</td>
<td>164</td>
<td>179</td>
<td>182</td>
<td>185</td>
</tr>
</tbody>
</table>
Longest Path Forecasting

- Total Project and Path forecasts in light-green
- Longest duration forecasts in lime-green

<table>
<thead>
<tr>
<th>Performance Path</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4-8-10</td>
<td>13.50</td>
<td>9.33</td>
<td>7.82</td>
<td>9.00</td>
<td>11.00</td>
<td>9.96</td>
<td>9.75</td>
<td>11.00</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4-8-10</td>
<td></td>
<td>28.67</td>
<td>10.89</td>
<td>10.00</td>
<td>12.67</td>
<td>10.51</td>
<td>10.00</td>
<td>11.33</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5-9</td>
<td></td>
<td></td>
<td>8.00</td>
<td>8.38</td>
<td>8.83</td>
<td>10.00</td>
<td>11.75</td>
<td>11.75</td>
<td>11.45</td>
<td>11.75</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td>3-8-10</td>
<td></td>
<td></td>
<td></td>
<td>12.00</td>
<td>9.62</td>
<td>10.00</td>
<td>12.67</td>
<td>10.51</td>
<td>10.00</td>
<td>11.33</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>7-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.75</td>
<td>12.24</td>
<td>12.75</td>
<td>11.57</td>
<td>10.78</td>
<td>11.40</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>6-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.17</td>
<td>10.00</td>
<td>12.50</td>
<td>12.14</td>
<td>11.58</td>
</tr>
<tr>
<td>Total Project</td>
<td>13.50</td>
<td>9.75</td>
<td>9.33</td>
<td>10.03</td>
<td>11.12</td>
<td>10.74</td>
<td>11.29</td>
<td>11.81</td>
<td>11.11</td>
<td>11.64</td>
<td>12.00</td>
<td></td>
</tr>
</tbody>
</table>

PMI-Tulsa PDC 4-5 May 2015

Copyright © Lipke 2015
Longest Path Forecasting

- Comparison of forecasts, Longest Path to Total Project
ES Requirement / Anomaly Identify

- Fundamental …when EV increases, ES must as well
- Verify for identified LP forecasts

\[ES(L) = PD \times AT / IEAC(t)_{LP} \]

- Anomaly identified for period 3

<table>
<thead>
<tr>
<th>Performance Path</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4-8-10</td>
<td>1.48</td>
<td>3.21</td>
<td>5.12</td>
<td>5.56</td>
<td>5.45</td>
<td>7.03</td>
<td>8.21</td>
<td>8.18</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4-8-10</td>
<td>2.50</td>
<td>4.16</td>
<td>5.00</td>
<td>4.74</td>
<td>6.66</td>
<td>8.00</td>
<td>7.94</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5-9</td>
<td>5.00</td>
<td>5.96</td>
<td>6.79</td>
<td>7.00</td>
<td>6.81</td>
<td>7.66</td>
<td>8.73</td>
<td>9.36</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-8-10</td>
<td>3.14</td>
<td>4.09</td>
<td>4.71</td>
<td>6.05</td>
<td>7.42</td>
<td>7.89</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-10</td>
<td>6.55</td>
<td>7.00</td>
<td>7.41</td>
<td>8.64</td>
<td>9.31</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-9</td>
<td>1.48</td>
<td>3.08</td>
<td>4.29</td>
<td>4.98</td>
<td>5.40</td>
<td>6.52</td>
<td>7.08</td>
<td>7.62</td>
<td>9.00</td>
<td>9.45</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>Total Project</td>
<td>1.48</td>
<td>3.08</td>
<td>4.29</td>
<td>4.98</td>
<td>5.40</td>
<td>6.52</td>
<td>7.08</td>
<td>7.62</td>
<td>9.00</td>
<td>9.45</td>
<td>10.00</td>
<td></td>
</tr>
</tbody>
</table>
Improved ES-LP Forecasting

• Selection of LP for a period is conditional:

Due to the requirement for ES(L) to increase, LP is chosen as the longest forecast having a positive change in ES(L).
Statistical Forecasting

- Initially – not believed possible
- Even if possible – overly burdensome and complex
- Nevertheless, the promise of ES(L)-LP warrants the effort
- As discovered, implementation ...IS SIMPLE
- Only requirement – ability to compute SPI(t)_p
- To obtain periodic SPI(t), all that is needed are periodic values of ES, regardless of their attribution ...and thus
 - ES values from the total project will yield its set of statistical forecasts
 - ES(L) values provide associated Longest Path forecasts
Statistical Forecasting

- Total Project statistical forecast
Statistical Forecasting

- ES(L)-LP and ES-LP statistical forecasts
 - More symmetrical than Total Project plots
 - Larger variation for ES-LP
Statistical Forecasting

- Put off by the extra effort? …*probably*
- Unproven method and extra effort …*into the waste basket*
- Both research and application results needed for verification
- With good results automated tools are created …drawbacks are removed
- For researchers and early adopters some assistance is offered by Excel files from ES website (www.earnedschedule.com)
 - ES Calculator vs1d …*down time & stop work conditions*
 - ES-LP Calculator v1c …*forecasts & ES(L)*
 - Statistical Forecasting Calculator v2c …*confidence limits, graphs*
Statistical Forecasting

- UK project analyst has applied ES-LP and reported good results
- Project Flight Deck incorporating ES-LP into their schedule analyzer tool
- PFD prototyping tool with two UK project performance analysts
- Assuming success … it is an easy extension to incorporate statistical forecasting
- Deemed useful … tool vendors incorporate and market
Wrap Up

• ES project duration forecasting has proven to be reliable
• ES forecasting becomes less reliable as topology of schedule becomes increasingly parallel
• Concept of LP proposed to overcome deficiency
• Selection of LP determined to be conditional
• ES(L) values utilized to compute SPI(t)ₚ, σ, and CLs
• Observed improvement with notional data
• Verification through research and application
References
