Applying Earned Value to a Manufacturing Environment

David Fox - General / Projects Manager
L\&A Pressure Welding Pty Ltd
Email: David@lapressure.com.au
UTS Masters by Research Student
20th May 2010

Content

- L\&A Project Environment
- Earned Value Management (EVM) - Research
- Earned Value (EV) \& Earned Schedule (ES) - Theory
- Applying EV \& ES - Sample Project
- Application Lessons

L\&A - Project Environment

- Company
- SME (~50 employees)
- Pressure Equipment
- Petrochemical
- Project Scope
- 3 to 18 months
- \$20k to \$7m
- Design \& Build
- Testing \& Painting
- Transport

EVM - Research Project Plan Outcome

Achieve project forecasting

EVM - Isolated System

EVM - Research Project

Benefits

- Project Mgt System
- Project reporting
- Cost transparency
- Tool for project decision making
- Other Business Areas
- Project Portfolio mgt
- Estimating feed back
- Risk management

Challenges

- Implementation
- Data capture
- Need for procedures \& flexibility in system
- Research Focus
- Curve Interpretation
- Forecast validation
- Integration of system with operations

EV Theory - Background

- History
- Introduced in the 1960 through the US Department of Defence
- Large projects only - costly \& complicated to implement
- These issues limited early uptake in the private sector, however users agreed on the systems principles
- 2003
- Research identifying human factors as the uptake barrier rather than the system its self
- A viable solution to the EVM schedule performance problem was publicly introduced by Walt Lipke, coined as Earned Schedule ${ }^{\ominus}$ (ES)
- AS4817 - Project Performance Measurement using EV - Introduced
- 2004
- ES Principles cited in the release of PMI Practice Standard for EVM
- 2006
- AS4817 revised, however ES principles remain outside its scope

EV Theory - Overview

- Positives
- Converts all activities to \$ - simplifies cost reporting
- Links time \& costs in a single cumulative report
- Project performance indicators, use same data set
- Negatives
- EVM schedule indicators use the planned value (PV)
- PV remain static when project runs late, causing the indicators to lose their management value
- Schedule variance measured in \$, not weeks / months
- Schedule performance indicator methods do not match the benefits of the cost indicators

EV Theory - Objective

Graphically Reports Cumulative Progress

Curves

- Planned Value (PV) - Authorised Budget over planned time 't'
- Earned value (EV) - Value of the budgeted progress at 't'
- Actual Cost (AC) - Cost of the actual progress at ${ }^{6} t^{3}$

EV Theory - Budget Terms

AS4817-2006 - Project Performance ... using EV

- Budget at Completion (BAC)
- Authorised budget to complete scope of work
- Sum of allocated budgets plus undistributed budget
- Undistributed Budget
- Budget associated with scope but not yet included in TPB
- Time Phased Budget (TPB)
- Schedule of expenditure for the BAC
- Performance Measurement Baseline (PMB)
- Project Budget
- Total budget for the project
- BAC

Authorised Project \$

Contingencies \$
Organisations \$

EV Theory - Measures

Three Measures

- Planned Value (PV)
- Sum of the PV's for each project task, equates to the Budget at Completion (BAC)
- Planned time, uses periodic intervals - Weeks / Months
- PV Curve - Cumulative planned value at the planned time \rightarrow Performance Measurement Baseline (PMB)
- Earned Value (EV)
- EV Curve - Cumulative planned value at the actual time interval accrued
- Actual Cost (AC)
- AC curve - Cumulatively actual cost at the actual time interval accrued

EV Theory - Indicators
 (EV) Cost Indicators
 - Cost Variance (CV) $\longrightarrow \mathrm{CV}=\mathrm{EV}-\mathrm{AC}$

- Cost Performance Index (CPI) \longrightarrow CPI = EVIAC
(EV) Schedule Indicators
- Schedule Variance (SV) \Longrightarrow SV = EV-PV
- Schedule Performance Index (SPI)

ES Theory - Indicators
 (ES) Schedule Indicators

- Schedule Variance $\left(\mathrm{SV}_{(\mathrm{t})}\right) \Longrightarrow \mathrm{SV}_{(\mathrm{t})}=\mathrm{ES}-\mathrm{AT}$
- Schedule Performance Index $\left(\mathrm{SPI}_{(\mathrm{t})}\right) \Longrightarrow \operatorname{SPI}_{(\mathrm{t})}=\mathrm{ES} / \mathrm{AT}$

New Terms (using ES method)

- AT - Actual Time, number of time increments corresponding to EV
- C - Number of whole time increments of PMB for condition EV \geq PV
- ES-Earned Schedule $E S=C+I$
- I- Portion of PMB increment earned $I=\frac{\left(E V-P V_{C}\right)}{\left(P V_{C+1}-P V_{C}\right)}$

EV Theory - When AT < Plan

EV Theory - When AT > Plan

ES Theory - ES Calculation

ES Theory - Reporting SV ${ }_{(t)}$

Applying EV - Steps

Prepare the BAC

Schedule Baseline

Time Phased Budget

Track the Project using Data \& Curves

Applying EV - Sample Project

Applying EV - Budget

Activity	Cost \$	
Engineering - Calculations, Drafting, Acceptance	\$3,000	
Material Delivery - Heads	\$30,000	
Material Delivery - Shell	\$20,000	
Material Delivery - Nozzles	\$12,000	
Material Delivery - Legs	\$8,000	Authorised Project
Build \& Test - Shell, end, nozzles, closing end, legs	\$23,000	Budget \rightarrow The BAC
Build \& Test - Testing	\$2,500	
Paint \& Dispatch - Deliver to Painter \& Site	\$3,000	
Paint \& Dispatch - Painting	\$6,000	
Budget at Completion (BAC)	\$107,500	
Contingencies \& Organisational Allowances	\$20,700	Reserves \& Business Costs
Project Budget	\$128,200	Total budget

Applying EV - Schedule

Dates for TPB

Engineering
Calculations - Week 1
Drafting - Week 2
Acceptance - Week 6
Material Delivery
Heads - Week 4
Shell - Week 3
Nozzles -Week 3
Legs - Week 5

Build \& Test
(Finish dates)
Shell - Week 4
End - Week 4
Nozzles - Week 6
Closing end - Week 6
Legs - Week 7
Testing - Week 8
Paint \& Dispatch
To painter - Week 8
Paint - Week 10
To site - Week 10

Applying EV - Time Phase Budget

Time Phase Budget - Sample Project
Project Weeks

Applying EV - Curve Data \rightarrow TPB

Cumulative Performance

Tracking Tools	Project Weeks										
	0	1	2	3	4	5	6	7	8	9	10
Planned Value (PV)	\$0	\$1,500	\$2,000	\$39,000	\$73,200	\$87,200	\$93,700	\$96,000	\$99,500	\$104,500	\$107,500
Eamed Value (EV)	\$0	\$0	\$1,500	\$25,000	\$72,750	\$87,200	\$91,100	\$95,100	\$98,500	\$99,500	\$107,500
Actual Value (AC)	\$0	\$0	\$1,200	\$22,700	\$64,450	\$81,475	\$85,575	\$89,975	\$94,675	\$94,675	\$102,675

Earned Value \& Earned Schedule Performance Measurements

Measurement Tools	Project Weeks										
	0	1	2	3	4	5	6	7	8	9	10
Cost Variance (CV = EV - AC)	\$0	\$0	\$300	\$2,300	\$8,300	\$5,725	\$5,525	\$5,125	\$3,825	\$4,825	\$4,825
Schedule Variance (SV = EV - PV)	\$0	-\$1,500	-\$500	-\$14,000	-\$450	\$0	-\$2,600	-\$900	-\$1,000	-\$5,000	\$0
Earned Schedule Actual Time (AT)	0	1	2	3	4	5	6	7	8	9	10
Whole Time Increment of PMB ($\mathrm{C}=\mathrm{AT}$ for $\mathrm{EV}>=\mathrm{PV}$)	0	0	1	2	3	5	5	6	7	8	10
Numerator portion of PMB increment earned $\left(I_{N}=\left(E V_{A T}-P V_{C}\right)\right.$	\$0	\$0	\$0	\$23,000	\$33,750	\$0	\$3,900	\$1,400	\$2,500	\$0	\$0
Denominator portion of PMB increment earned $I_{D}=\left(P V_{C+1}-P V_{C}\right)$	\$1,500	\$1,500	\$500	\$37,000	\$34,200	\$6,500	\$6,500	\$2,300	\$3,500	\$5,000	-\$107,500
Earned Schedule $\left(E S=C+I_{N} / I_{D}\right)$	0.00	0.00	1.00	2.62	3.99	5.00	5.60	6.61	7.71	8.00	10.00
Schedule Variance (time) $\left(S V_{(t)}=E S-A T\right)$	0.00	-1.00	-1.00	-0.38	-0.01	0.00	-0.40	-0.39	-0.29	-1.00	0.00
Schedule Performance Index (time), $\left(\right.$ SPI $_{(t)}=$ ES/AT)	1.00	0.00	0.50	0.87	1.00	1.00	0.93	0.94	0.96	0.89	1.00

Applying EV - Curve Output

Applying EV - Lessons

- Baseline scheduling \& TPB need accuracy
- Errors in these drivers will be displayed as delays or early finish dates by the indicators
- Balance between effort \& the benefits
- For small projects (where scope is tangible) a gut feeling needs to be applied until the systems response is understood
- When is the curve showing a trend - Statistical analysis / filtering curve response over time?

References

- Kim, E., Wells, W.G. \& Duffey, M.R. 2003, 'A model for effective implementation of Earned Value Management methodology', International Journal of Project Management, vol. 21, no. 5, pp. 375-382.
- Lipke, W., Zwikael, O., Henderson, K. \& Anbari, F. 2009, 'Prediction of project outcome: The application of statistical methods to earned value management and earned schedule performance indexes', International Journal of Project Management, vol. 27, no. 4, pp. 400-407.
- Lipke, W. \& Henderson, K. 2006, Earned Schedule: An Emerging Enhancement to Earned Value Management', Cross Talk the Journal of US Defence Software Engineering, Issue. Nov
- Standards Australia 2006, Project performance measurement using Earned Value AS 4817-2006, Standards Australia, Sydney.

Supp 1 - Earned Schedule Notes

- Earned Schedule - Background
- Official Earned Schedule (ES) web site is found at; www.earnedschedule.com
- ES concept was conceived during the summer of 2002
- Publicly introduced it in March 2003 with 'The Measurable News' article, 'Schedule is Different'
- Interest has grown in the method which has seen it expand into areas of:
- Application of statistical methods to improve forecasting
- Schedule adherence measures relating to EVM's connection to the network schedule

Supp 2 - Earned Schedule Origin

- Walt Lipke
- Developed the Earned Schedule ${ }^{\oplus}$ method
- Professional engineer with a Master' degree in Physics \& Graduate of the US Department of Defense course for Program Managers
- Recently retired deputy chief of the Software Division at the Oklahoma City Air Logistics Centre
- Recently published a book tilted 'Earned Schedule'
- Kim Henderson
- Actively involved with Walt Lipke in the testing and promotion of ES
- He is Sydney based IT professional
- Provided some initial information for the research project noted in slides 4 \& 5
- Master of Science in computing from UTS

Supp 3 - Data for Theory Curves

Working for Earned Value \& Earned Schedule Sample - Slides 13 to 16

Curves	EV Curve Data (\$k)								
Planned Value (PV)	\$0	\$150	\$500	\$1,100	\$1,350	\$1,450	\$1,500		
Earned Value (EV)	\$0	\$50	\$250	\$600	\$900	\$1,200	\$1,250	\$1,300	\$1,500
Actual Cost (AC)	\$0	\$300	\$700	\$1,250	\$1,550	\$1,650	\$1,700	\$1,750	\$1,800
Time Increments	0	1	2	3	4	5	6	7	8
ES Inputs	Calculation for ES								
Actual Time (AT)	0	1	2	3	4	5	6	7	8
C = Whole time increment of PMB for condition EV>=PV	0	0	1	2	2	3	3	3	6
$I_{N}=\left(E V_{A T}-P V_{C}\right)$ Numerator portion of PMB	0	50	100	100	400	100	150	200	0
$I_{D}=\left(P V_{C+1}-P V_{C}\right)$ Denominator portion of PMB	150	150	350	600	600	250	250	250	-1,500
$E S=C+I_{N} / I_{D}$ Earned Schedule	0.00	0.33	1.29	2.17	2.67	3.40	3.60	3.80	6.00
$\begin{gathered} \mathrm{SV}_{(\mathrm{t})}=\mathrm{ES}-\mathrm{AT} \\ \text { Schedule Variance (time) } \\ \hline \end{gathered}$	0.00	-0.67	-0.71	-0.83	-1.33	-1.60	-2.40	-3.20	-2.00
$\mathrm{SPI}_{(\mathrm{t})}=\mathrm{ES} / \mathrm{AT}$ Schedule Performance Index (time)	0	0.33	0.64	0.72	0.67	0.68	0.60	0.54	0.75
$\begin{gathered} \operatorname{Sum}_{\mathrm{ES}}+\mathrm{SV}_{(\mathrm{t})}=\mathrm{AT} \\ \text { Check of ES \& SV(t) Calculation } \end{gathered}$	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00

Thankyou for your Attention

