Applying Earned Value to a Manufacturing Environment

David Fox – General / Projects Manager L&A Pressure Welding Pty Ltd Email: David@lapressure.com.au UTS Masters by Research Student 20th May 2010

Content

- L&A Project Environment
- Earned Value Management (EVM) Research

CLEDECK

• Earned Value (EV) & Earned Schedule (ES) - Theory

- Applying EV & ES Sample Project
- Application Lessons

L&A - Project Environment

• Company

- SME (~50 employees)
- Pressure Equipment
- Petrochemical
- Project Scope
 - 3 to 18 months
 - \$20k to \$7m
 - Design & Build
 - Testing & Painting
 - Transport

EVM - Research Project

Benefits

- Project Mgt System
 - Project reporting
 - Cost transparency
 - Tool for project
 decision making

Other Business Areas

- Project Portfolio mgt
- Estimating feed back
- Risk management

Challenges

- Implementation
 - Data capture
 - Need for procedures & flexibility in system
- Research Focus
 - Curve Interpretation
 - Forecast validation
 - Integration of system
 with operations

EV Theory - Background

- History
 - Introduced in the 1960 through the US Department of Defence
 - Large projects only costly & complicated to implement
 - These issues limited early uptake in the private sector, however users agreed on the systems principles
 - 2003
 - Research identifying human factors as the uptake barrier rather than the system its self
 - A viable solution to the EVM schedule performance problem was publicly introduced by Walt Lipke, coined as Earned Schedule[©] (ES)
 - AS4817 Project Performance Measurement using EV Introduced
 - 2004
 - ES Principles cited in the release of PMI Practice Standard for EVM
 - 2006
 - AS4817 revised, however ES principles remain outside its scope

EV Theory - Overview

Positives

- Converts all activities to \$ simplifies cost reporting
- Links time & costs in a single cumulative report
- Project performance indicators, use same data set
- Negatives
 - EVM schedule indicators use the planned value (PV)
 - PV remain static when project runs late, causing the indicators to lose their management value
 - Schedule variance measured in \$, not weeks / months
 - Schedule performance indicator methods do not match the benefits of the cost indicators

EV Theory - Objective Graphically Reports Cumulative Progress

Curves

- Planned Value (PV) Authorised Budget over planned time 't'
- Earned value (EV) Value of the budgeted progress at 't'
- Actual Cost (AC) Cost of the actual progress at 't'

EV Theory - Budget Terms

AS4817 – 2006 - Project Performance ... using EV

- Budget at Completion (BAC)
 - Authorised budget to complete scope of work
 - Sum of allocated budgets plus undistributed budget
- Undistributed Budget
 - Budget associated with scope but not yet included in TPB
- Time Phased Budget (TPB)
 - Schedule of expenditure for the BAC
 - Performance Measurement Baseline (PMB)
- Project Budget
 - Total budget for the project
 - BAC
 - Management reserves
 - Overheads & profit

EV Theory - Measures

Three Measures

- Planned Value (PV)
 - Sum of the PV's for each project task, equates to the Budget at Completion (BAC)
 - Planned time, uses periodic intervals Weeks / Months
 - PV Curve Cumulative planned value at the planned time
 →Performance Measurement Baseline (PMB)
- Earned Value (EV)
 - EV Curve Cumulative <u>planned value</u> at the <u>actual time</u> interval accrued
- Actual Cost (AC)
 - AC curve Cumulatively <u>actual cost</u> at the <u>actual time</u> interval accrued

EV Theory - Indicators (EV) Cost Indicators

- Cost Variance (CV) CV = EV-AC
- Cost Performance Index (CPI)

(EV) Schedule Indicators

- Schedule Variance (SV) >>> SV = EV-PV
- Schedule Performance Index (SPI)

CPI = EV/AC

ES Theory - Indicators (ES) Schedule Indicators

- Schedule Variance $(SV_{(t)}) \implies SV_{(t)} = ES-AT$
- Schedule Performance Index (SPI_(t)) =

New Terms (using ES method)

- AT Actual Time, number of time increments corresponding to EV
- C Number of whole time increments of PMB for condition $EV \ge PV$
- ES Earned Schedule ES = C + I
- I Portion of PMB increment earned

$$I = \frac{(EV - PV_C)}{(PV_{C+1} - PV_C)}$$

 $SPI_{(t)} = ES/AT$

EV Theory - When AT < Plan

Applying EV - Steps

Prepare the BAC

Schedule Baseline

Time Phased Budget

Track the Project using Data & Curves

Applying EV - Sample Project

Applying EV - Budget

Activity	Cost \$	
Engineering – Calculations, Drafting, Acceptance	\$3,000	
Material Delivery – Heads	\$30,000	
Material Delivery – Shell	\$20,000	
Material Delivery – Nozzles	\$12,000	
Material Delivery – Legs	\$8,000	Authorised Project
Build & Test – Shell, end, nozzles, closing end, legs	\$23,000	Budget \rightarrow The BAC
Build & Test – Testing	<i>\$2,500</i>	
Paint & Dispatch – Deliver to Painter & Site	\$3,000	
Paint & Dispatch – Painting	\$6,000	
Budget at Completion (BAC)	\$107,500	
Contingencies & Organisational Allowances	\$20,700	📴 Reserves & Business Costs
Project Budget	\$128,200	Total budget

Applying EV - Schedule

Task Name	Duration																Datas for TDP
		W-4	W-3	W-2	W-1	VV1	W2	W3	VV4	W5	VV6	W7	VV8	VV9	W10	W11	Dales IOI IPD
Applying EV - Sample Project	9.4 wks	Applyi	ng EV - S	Sample F	roject										9.4	wks	
I Engineering	5.5 wks			Engin	eering							5.5 wks				-	Engineering
□ 1.1 Design	1 wk			E	Design		1 wk					••••••	••••••			·····	Calculations Maak
1.1.1 Calculations	1 wk			Calcu	lations	•••••	26/05										Calculations - Week
1.1.2 Submission	0 days				Subn	nission (*										Drafting – Week 2
□ 1.2 Detailing	1 wk				D	etailing 🛛		🌵 1 wk								1	Acceptance – Week 6
1.2.1 Drafting	1 wk					Drafting	-	2/06									······································
1.2.2 Submission	0 days					Subm	ission .	* 1									
1.3 Registeration	3.5 wks					Registe	ration I	.				3.5 wks				-	Material Delivery
1.3.1 Verify	1.5 wks						Verify	1	1 _ر	4/06						1	Heads - Week 4
1.3.2 Submission	0 days							Submise	sion 🗳								
1.3.3 Acceptance	2 wks							Accept	ance 🗖		2	8/06					Snell – Week 3
🖃 2 Buying	4 wks					Buying					4 wks	s					Nozzles -Week 3
2.1 Ordering	3 wks				0	rdering	<u>.</u>			💛 3 wks							Leas - Week 5
2.1.1 Heads	1 day					Heads	⊠ <mark>_27/05</mark>		1			1					Legs - Week S
2.1.2 Shell	1 day					Shell	27/05	ήL					-				
2.1.3 Nozzles	1 day						Nozzles	∎ <mark>7 4/96</mark>				<u> </u>					Build & Test
2.1.4 Legs	1 day								Legs	16/06							(Einich datas)
2.2 Material Delivery	2.8 wks					Material [elivery)		1		2.8 w	ks			/	1	(FIIIISII dales)
2.2.1 Heads	0 wks							Heads	•							_	Shell – Week 4
2.2.2 Shell	0 wks						Shell	b 1							1		End - Week 4
2.2.3 Nozzles	0 wks						N	ozzles	♦						_		
2.2.4 Legs	0 days									Legs	•			<u></u>			NOZZIES – WEEK 6
∃ 3 Build & Test	5.5 wks					Build	& Test							5.5 wks	•		Closing end – Week 6
3.1 Roll Shell & weld	1 wk					Roll She	l & weld		22 10/06								Logs Wook 7
3.2 Fit end & weld	0.5 wks						Fit en	d & weld		15/06						ļ	Legs - Week 7
3.3 Fit nozzles & weld	1.5 wks						Fit no	ozzles 8	weld 🖻		24/06						Testing – Week 8
3.4 Fit Closing end & weld	0.5 wks							Fit Clo	sing en	d & weld	Ž	29/06				ļ	
3.5 Fit legs & weld	1 wk								F	it legs &	weld 🖻		6/07			ļ	Deint & Diensteh
3.6 Testing	1 wk										Te	esting 🖻		13/07			Paint & Dispatch
🖃 4 Paint & Dispatch	1.7 wks										Pair	nt & Disp	oatch		1.7	wks	To painter – Week 8
4.1 Deliver to painter	1 day										Deli	ver to p	ainter 🗹	14/07		<u>_</u>	Paint - Week 10
4.2 Paint	1.5 wks											Ļ	Paint		23/0	1	
4.3 Deliver to site	0 days												Deliv	er to site			IO SILE – WEEK 10

Applying EV - Time Phase Budget

Time Phase Budget - Sample Project

Project Weeks													
Activities from WBS	0	1	2	3	4	5	6	7	8	9	10	\sum for Row	∑ for Activities
Engineering													\$3,000
Calculations		\$1,500)									\$1,5000	
Drafting			\$500									\$500	
Acceptance							\$1,000					\$1,000	
Material Delivery													\$70,000
Heads					\$30,000							\$30,000	
Shel				\$20,000			1					\$20,000	
Nozzle				\$12,000			PV's	from the	e BAC a	re assig	ined a	\$12,000	
Legs						\$8,000	time	interval	accord	ing to th	ne	\$8,000	
Build & Test							sche	dule, e.g	g.;				
% of Build & Test - Shell, end,							•Enai	ineerind	– Acce	ptance	week 6		\$25,500.00
nozzle \$23k BAC allowance							•Mate	erial Del	iverv – l	Heads v	veek 4		
Roll shell & weld (25%)				\$5,000	\$750							\$5,750	
Fit end & weld (15%)		DV value	as aro		\$3,450							\$3,450	
Fit nozzles & weld (30%)		addad t		~		\$6,000	\$900					\$6,900	
Fit closing end & weld (20%)				en			\$4,600					\$4,600	
Fit leg & weld (10%		they occ	cur		Actus		nd	\$2,300				\$2,300	
Testing					ACIUA	al cost a	na		\$2,500			\$2,500	
Paint & Dispatch			1		wnen	they oc	cur						\$9,000
Delivery to Painte	1		l i		are a	dded			\$1,000			\$1,000	
Pain	!							[\$5,000	\$1,000	\$6,000	
Delivery to Site											\$2,000	\$2,000	
Fortnightly Planned Value (PV)	\$(\$1,500	\$500	\$37,000	\$34,200	\$14,000	\$6,500	\$2,300	\$3,500	\$5,000	\$3,000	TPB BAC	\$107,500
Performance Measurement	\$(\$1 500	\$2 000	\$39,000	\$73 200	\$87 200	\$93 700	\$96 000	\$99 500	\$104 500	\$107 500	Project BAC	\$107 500
Baseline (PMB)		¢1,000	φ2,000	<i>\</i>		φ01,200	φοο,i σο	<i>\$00,000</i>	<i>Q00,000</i>	\$101,000			<i></i>
Actual Labour Cost	\$0	\$0	\$0	\$3,000	\$5,750	\$7,525	\$4,100	\$3,200	\$1,100	<u>\$0</u>	\$0	\$24,675	I otal Labour
Actual Material Cost	\$0	\$0	\$1,200	\$18,500	\$36,000	\$9,500	\$0	\$1,200	\$3,600	\$0	\$8,000	\$78,000	I otal Mat
Earned Value (EV)	\$0	\$0	\$1,500	\$23,500	\$47,750	\$14,450	\$3,900	\$4,000	\$3,400	\$1,000	\$8,000	\$107,500	Total EV
Reporting date for the period	0	1	2	3	4	5	6	7	8	9	10	\$102,675	Total Cost

Applying EV - Curve Data → TPB

Tracking Tools	Project Weeks													
	0	1	2	3	4	5	6	7	8	9	10			
Planned Value (PV)	\$0	\$1,500	\$2,000	\$39,000	\$73,200	\$87,200	\$93,700	\$96,000	\$99,500	\$104,500	\$107,500			
Earned Value (EV)	\$0	\$0	\$1,500	\$25,000	\$72,750	\$87,200	\$91,100	\$95,100	\$98,500	\$99,500	\$107,500			
Actual Value (AC)	\$0	\$0	\$1,200	\$22,700	\$64,450	\$81,475	\$85,575	\$89,975	\$94,675	\$94,675	\$102,675			

Earned Value & Earned Schedule Performance Measurements

Mascurament Tools	Project Weeks												
	0	1	2	3	4	5	6	7	8	9	10		
Cost Variance (CV = EV - AC)	\$0	\$0	\$300	\$2,300	\$8,300	\$5,725	\$5,525	\$5,125	\$3,825	\$4,825	\$4,825		
Schedule Variance (SV = EV - PV)	\$0	-\$1,500	-\$500	-\$14,000	-\$450	\$0	-\$2,600	-\$900	-\$1,000	-\$5,000	\$0		
Earned Schedule Actual Time (AT)	0	1	2	3	4	5	6	7	8	9	10		
Whole Time Increment of PMB (C = AT for EV >= PV)	0	0	1	2	3	5	5	6	7	8	10		
Numerator portion of PMB increment earned (I _N = (EV _{AT} - PV _C)	\$0	\$0	\$0	\$23,000	\$33,750	\$0	\$3,900	\$1,400	\$2,500	\$0	\$0		
Denominator portion of PMB increment earned I _D = (PV _{C+1} - PV _C)	\$1,500	\$1,500	\$500	\$37,000	\$34,200	\$6,500	\$6,500	\$2,300	\$3,500	\$5,000	-\$107,500		
Earned Schedule (ES = C + I_N/I_D)	0.00	0.00	1.00	2.62	3.99	5.00	5.60	6.61	7.71	8.00	10.00		
Schedule Variance (time) (SV _(t) = ES - AT)	0.00	-1.00	-1.00	-0.38	-0.01	0.00	-0.40	-0.39	-0.29	-1.00	0.00		
Schedule Performance Index (time), (SPI _(t) = ES/AT)	1.00	0.00	0.50	0.87	1.00	1.00	0.93	0.94	0.96	0.89	1.00		

Applying EV - Lessons

- Baseline scheduling & TPB need accuracy
- Errors in these drivers will be displayed as delays or early finish dates by the indicators
- Balance between effort & the benefits
- For small projects (where scope is tangible) a gut feeling needs to be applied until the systems response is understood
- When is the curve showing a trend Statistical analysis / filtering curve response over time?

References

- Kim, E., Wells, W.G. & Duffey, M.R. 2003, 'A model for effective implementation of Earned Value Management methodology', *International Journal of Project Management, vol. 21, no. 5, pp. 375-382.*
- Lipke, W., Zwikael, O., Henderson, K. & Anbari, F. 2009, 'Prediction of project outcome: The application of statistical methods to earned value management and earned schedule performance indexes', *International Journal of Project Management, vol. 27, no. 4, pp. 400-407.*
- Lipke, W. & Henderson, K. 2006, Earned Schedule: An Emerging Enhancement to Earned Value Management', *Cross Talk the Journal* of US Defence Software Engineering, Issue. Nov
- Standards Australia 2006, *Project performance measurement using Earned Value AS 4817-2006, Standards Australia, Sydney.*

Supp 1 - Earned Schedule Notes

Earned Schedule – Background

- Official Earned Schedule (ES) web site is found at;
 www.earnedschedule.com
- ES concept was conceived during the summer of 2002
- Publicly introduced it in March 2003 with '*The Measurable News*' article, '*Schedule is Different'*
- Interest has grown in the method which has seen it expand into areas of:
 - Application of statistical methods to improve forecasting
 - Schedule adherence measures relating to EVM's connection to the network schedule

Supp 2 - Earned Schedule Origin

• Walt Lipke

- Developed the Earned Schedule[©] method
- Professional engineer with a Master' degree in Physics & Graduate of the US Department of Defense course for Program Managers
- Recently retired deputy chief of the Software Division at the Oklahoma City Air Logistics Centre
- Recently published a book tilted 'Earned Schedule'

Kim Henderson

- Actively involved with Walt Lipke in the testing and promotion of ES
- He is Sydney based IT professional
- Provided some initial information for the research project noted in slides 4 & 5
- Master of Science in computing from UTS

Supp 3 - Data for Theory Curves

Working for Earned Value & Earned Schedule Sample - Slides 13 to 16

Curves	EV Curve Data (\$k)										
Planned Value (PV)	\$0	\$150	\$500	\$1,100	\$1,350	\$1,450	\$1,500				
Earned Value (EV)	\$0	\$50	\$250	\$600	\$900	\$1,200	\$1,250	\$1,300	\$1,500		
Actual Cost (AC)	\$0	\$300	\$700	\$1,250	\$1,550	\$1,650	\$1,700	\$1,750	\$1,800		
Time Increments	0	1	2	3	4	5	6	7	8		
ES Inputs		Calculation for ES									
Actual Time (AT)	0	1	2	3	4	5	6	7	8		
C = Whole time increment of PMB for condition EV>=PV	0	0	1	2	2	3	3	3	6		
I _N = (EV _{AT} - PV _C) Numerator portion of PMB	0	50	100	100	400	100	150	200	0		
$I_D = (PV_{C+1} - PV_C)$ Denominator portion of PMB	150	150	350	600	600	250	250	250	-1,500		
ES = C + I _N /I _D Earned Schedule	0.00	0.33	1.29	2.17	2.67	3.40	3.60	3.80	6.00		
SV _(t) = ES – AT Schedule Variance (time)	0.00	-0.67	-0.71	-0.83	-1.33	-1.60	-2.40	-3.20	-2.00		
SPI _(t) = ES/AT Schedule Performance Index (time)	0	0.33	0.64	0.72	0.67	0.68	0.60	0.54	0.75		
Sum ES +SV _(t) = AT Check of ES & SV(t) Calculation	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00		

Thankyou for your Attention

L&A Pressure Welding Pty Ltd