Applying Earned Value to a Manufacturing Environment

David Fox – General / Projects Manager
L&A Pressure Welding Pty Ltd
Email: David@lapressure.com.au
UTS Masters by Research Student
20th May 2010
Content

- L&A Project Environment
- Earned Value Management (EVM) - Research
- Earned Value (EV) & Earned Schedule (ES) - Theory
- Applying EV & ES - Sample Project
- Application Lessons
L&A - Project Environment

- **Company**
 - SME (~50 employees)
 - Pressure Equipment
 - Petrochemical
- **Project Scope**
 - 3 to 18 months
 - $20k to $7m
 - Design & Build
 - Testing & Painting
 - Transport
EVM - Research Project

Plan
- Learn EV Theory
- Extract Project data
- Track projects
- Apply data to the EV method
- Achieve project forecasting

Outcome
- Tenders
- Accounts
- Buying
- Project Mgt System
- Strategic Planning

EVM - Isolated System
Centralised System
EVM - Research Project

Benefits

- Project Mgt System
 - Project reporting
 - Cost transparency
 - Tool for project decision making
- Other Business Areas
 - Project Portfolio mgt
 - Estimating feed back
 - Risk management

Challenges

- Implementation
 - Data capture
 - Need for procedures & flexibility in system
- Research Focus
 - Curve Interpretation
 - Forecast validation
 - Integration of system with operations
EV Theory - Background

- **History**
 - Introduced in the 1960 through the US Department of Defence
 - Large projects only - costly & complicated to implement
 - These issues limited early uptake in the private sector, however users agreed on the systems principles
 - 2003
 - Research identifying human factors as the uptake barrier rather than the system itself
 - A viable solution to the EVM schedule performance problem was publicly introduced by Walt Lipke, coined as Earned Schedule© (ES)
 - AS4817 – Project Performance Measurement using EV - Introduced
 - 2004
 - ES Principles cited in the release of PMI Practice Standard for EVM
 - 2006
 - AS4817 revised, however ES principles remain outside its scope
EV Theory - Overview

- **Positives**
 - Converts all activities to $ - simplifies cost reporting
 - Links time & costs in a single cumulative report
 - Project performance indicators, use same data set

- **Negatives**
 - EVM schedule indicators use the planned value (PV)
 - PV remain static when project runs late, causing the indicators to lose their management value
 - Schedule variance measured in $, not weeks / months
 - Schedule performance indicator methods do not match the benefits of the cost indicators
EV Theory - Objective

Graphically Reports Cumulative Progress

<table>
<thead>
<tr>
<th>Activity</th>
<th>Cost $k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material - Heads</td>
<td>$200</td>
</tr>
<tr>
<td>Material - Shell</td>
<td>$130</td>
</tr>
<tr>
<td>Material - Nozzles</td>
<td>$125</td>
</tr>
<tr>
<td>Material - Legs</td>
<td>$110</td>
</tr>
<tr>
<td>Subcontract - Testing</td>
<td>$75</td>
</tr>
<tr>
<td>Subcontract - Painting</td>
<td>$80</td>
</tr>
<tr>
<td>Subcontract - Transport</td>
<td>$50</td>
</tr>
<tr>
<td>Direct Labour</td>
<td>$530</td>
</tr>
<tr>
<td>Engineering</td>
<td>$200</td>
</tr>
</tbody>
</table>

Budget at Completion (BAC) $1,500

Curves

- **Planned Value (PV)** – Authorised Budget over planned time ‘t’
- **Earned value (EV)** – Value of the budgeted progress at ‘t’
- **Actual Cost (AC)** – Cost of the actual progress at ‘t’
Budget Terms

- **Budget at Completion (BAC)**
 - Authorised budget to complete scope of work
 - Sum of allocated budgets plus undistributed budget

- **Undistributed Budget**
 - Budget associated with scope but not yet included in TPB

- **Time Phased Budget (TPB)**
 - Schedule of expenditure for the BAC
 - Performance Measurement Baseline (PMB)

- **Project Budget**
 - Total budget for the project
 - BAC
 - Management reserves
 - Overheads & profit

- **Authorised Project $**
- **Contingencies $**
- **Organisations $**
EV Theory - Measures

Three Measures

- **Planned Value (PV)**
 - Sum of the PV’s for each project task, equates to the Budget at Completion (BAC)
 - Planned time, uses periodic intervals – Weeks / Months
 - PV Curve - Cumulative planned value at the planned time

- **Earned Value (EV)**
 - EV Curve - Cumulative planned value at the actual time

- **Actual Cost (AC)**
 - AC curve - Cumulatively actual cost at the actual time
EV Theory - Indicators

(EV) Cost Indicators
- Cost Variance (CV) \(CV = EV - AC \)
- Cost Performance Index (CPI) \(CPI = \frac{EV}{AC} \)

(EV) Schedule Indicators
- Schedule Variance (SV) \(SV = EV - PV \)
- Schedule Performance Index (SPI) \(SPI = \frac{EV}{PV} \)
ES Theory - Indicators

ES Schedule Indicators

- Schedule Variance \(SV(t) \) \(SV(t) = ES - AT \)
- Schedule Performance Index \(SPI(t) \) \(SPI(t) = ES / AT \)

New Terms (using ES method)

- AT – Actual Time, number of time increments corresponding to EV
- C – Number of whole time increments of PMB for condition \(EV \geq PV \)
- ES – Earned Schedule \(ES = C + I \)
- I – Portion of PMB increment earned \(I = \frac{(EV - PV_C)}{(PV_{C+1} - PV_C)} \)
EV Theory - When AT < Plan

- **PV**: Projected Value
- **EV**: Earned Value
- **AC**: Actual Cost
- **CV**: Cost Variance
- **SV**: Schedule Variance

- **Actual Time (AT = 3)**
- **PMB**: Project Management Baseline
- **BAC**: Budget at Completion

Measurements:
- **SV(t) ~ 0.8 months late**
- **SV ~ $500k late**
- **ES = 2 full intervals + portion of the 3rd**

Graph: Showcases the comparison between actual time and planned time, highlighting cost and schedule variances.
EV Theory - When AT > Plan

CV, remains valid

PV not available for EVM, SV calculation
ES calculation for SV(t) remains valid

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

PV not available for EVM, SV calculation
ES calculation for SV(t) remains valid

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?

SV(t) ~ 3 and bit months late

Actual Time
AT = 7

SV = $200k late?
ES Theory – ES Calculation

\[ES = C + I \]

\[I = \frac{I_N}{I_D} = \frac{(EV - PV_C)}{(PV_{C+1} - PV_C)} \]

\[I_D = PV_{C+1} - PV_C \]

\[I_N = EV - PV_C \]

A change in EV affects the \(I \) to PV intersection

Change in the \(I \) to PV intersection will move \(I \) on \((t)\), changing ES

3 full intervals + portion of the 4\(^{th}\)
ES Theory - Reporting $SV(t)$
Applying EV - Steps

1. Prepare the BAC
2. Schedule Baseline
3. Time Phased Budget
4. Track the Project using Data & Curves
Applying EV - Sample Project

Nozzles

Heads / Ends

Legs

Shell
Applying EV - Budget

<table>
<thead>
<tr>
<th>Activity</th>
<th>Cost $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering – Calculations, Drafting, Acceptance</td>
<td>$3,000</td>
</tr>
<tr>
<td>Material Delivery – Heads</td>
<td>$30,000</td>
</tr>
<tr>
<td>Material Delivery – Shell</td>
<td>$20,000</td>
</tr>
<tr>
<td>Material Delivery – Nozzles</td>
<td>$12,000</td>
</tr>
<tr>
<td>Material Delivery – Legs</td>
<td>$8,000</td>
</tr>
<tr>
<td>Build & Test – Shell, end, nozzles, closing end, legs</td>
<td>$23,000</td>
</tr>
<tr>
<td>Build & Test – Testing</td>
<td>$2,500</td>
</tr>
<tr>
<td>Paint & Dispatch – Deliver to Painter & Site</td>
<td>$3,000</td>
</tr>
<tr>
<td>Paint & Dispatch – Painting</td>
<td>$6,000</td>
</tr>
<tr>
<td>Budget at Completion (BAC)</td>
<td>$107,500</td>
</tr>
<tr>
<td>Contingencies & Organisational Allowances</td>
<td>$20,700</td>
</tr>
<tr>
<td>Project Budget</td>
<td>$128,200</td>
</tr>
</tbody>
</table>

Authorised Project Budget ➔ The BAC

- Reserves & Business Costs
- Total budget
Dates for TPB

- **Engineering Calculations** – Week 1
- **Drafting** – Week 2
- **Acceptance** – Week 6
- **Material Delivery**
 - Heads – Week 4
 - Shell – Week 3
 - Nozzles - Week 3
 - Legs – Week 5
- **Build & Test (Finish dates)**
 - Shell – Week 4
 - End – Week 4
 - Nozzles – Week 6
 - Closing end – Week 6
 - Legs – Week 7
 - Testing – Week 8
- **Paint & Dispatch**
 - To painter – Week 8
 - Paint – Week 10
 - To site – Week 10

Applying EV - Schedule

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applying EV - Sample Project</td>
<td>9.4 wks</td>
</tr>
<tr>
<td>1 Engineering</td>
<td>5.5 wks</td>
</tr>
<tr>
<td>1.1 Design</td>
<td>1 wk</td>
</tr>
<tr>
<td>1.1.1 Calculations</td>
<td>1 wk</td>
</tr>
<tr>
<td>1.1.2 Submission</td>
<td>0 days</td>
</tr>
<tr>
<td>1.2 Detailing</td>
<td>1 wk</td>
</tr>
<tr>
<td>1.2.1 Drafting</td>
<td>1 wk</td>
</tr>
<tr>
<td>1.2.2 Submission</td>
<td>0 days</td>
</tr>
<tr>
<td>1.3 Registration</td>
<td>3.5 wks</td>
</tr>
<tr>
<td>1.3.1 Verify</td>
<td>1.5 wks</td>
</tr>
<tr>
<td>1.3.2 Submission</td>
<td>0 days</td>
</tr>
<tr>
<td>1.55 Acceptance</td>
<td>2 wk</td>
</tr>
<tr>
<td>2 Buying</td>
<td>4 wks</td>
</tr>
<tr>
<td>2.1 Ordering</td>
<td>3 wks</td>
</tr>
<tr>
<td>2.1.1 Nozzles</td>
<td>1 day</td>
</tr>
<tr>
<td>2.1.2 Shell</td>
<td>1 day</td>
</tr>
<tr>
<td>2.1.3 Nozzles</td>
<td>1 day</td>
</tr>
<tr>
<td>2.1.4 Legs</td>
<td>1 day</td>
</tr>
<tr>
<td>2.2 Material Delivery</td>
<td>2.8 wks</td>
</tr>
<tr>
<td>2.2.1 Heads</td>
<td>0 wk</td>
</tr>
<tr>
<td>2.2.2 Shell</td>
<td>0 wk</td>
</tr>
<tr>
<td>2.2.3 Nozzles</td>
<td>0 wk</td>
</tr>
<tr>
<td>2.2.4 Legs</td>
<td>0 days</td>
</tr>
<tr>
<td>3 Build & Test</td>
<td>5.5 wks</td>
</tr>
<tr>
<td>3.1 Roll Shell & weld</td>
<td>1 wk</td>
</tr>
<tr>
<td>3.2 Tube end & weld</td>
<td>0.5 wks</td>
</tr>
<tr>
<td>3.3 Fill Nozzles & weld</td>
<td>1.5 wks</td>
</tr>
<tr>
<td>3.4 Fit Closing end & weld</td>
<td>0.5 wks</td>
</tr>
<tr>
<td>3.5 Fit Legs & weld</td>
<td>1 wk</td>
</tr>
<tr>
<td>3.6 Testing</td>
<td>1 wk</td>
</tr>
<tr>
<td>4 Paint & Dispatch</td>
<td>1.7 wks</td>
</tr>
<tr>
<td>4.1 Deliver to painter</td>
<td>1 day</td>
</tr>
<tr>
<td>4.2 Paint</td>
<td>1.5 wks</td>
</tr>
<tr>
<td>4.3 Deliver to site</td>
<td>0 days</td>
</tr>
</tbody>
</table>
Applying EV - Time Phase Budget

Time Phase Budget - Sample Project

Project Weeks

<table>
<thead>
<tr>
<th>Activities from WBS</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Σ for Row</th>
<th>Σ for Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td></td>
<td>$3,000</td>
<td></td>
</tr>
<tr>
<td>Calculations</td>
<td></td>
<td>$1,500</td>
<td></td>
</tr>
<tr>
<td>Drafting</td>
<td></td>
<td>$500</td>
<td></td>
</tr>
<tr>
<td>Acceptance</td>
<td></td>
<td>$1,000</td>
<td></td>
</tr>
<tr>
<td>Material Delivery</td>
<td></td>
<td>$70,000</td>
<td></td>
</tr>
<tr>
<td>Heads</td>
<td></td>
<td>$30,000</td>
<td></td>
</tr>
<tr>
<td>Shell</td>
<td></td>
<td>$20,000</td>
<td></td>
</tr>
<tr>
<td>Nozzle</td>
<td></td>
<td>$12,000</td>
<td></td>
</tr>
<tr>
<td>Legs</td>
<td></td>
<td>$8,000</td>
<td></td>
</tr>
<tr>
<td>Build & Test</td>
<td></td>
<td>$25,500.00</td>
<td></td>
</tr>
<tr>
<td>Roll shell & weld (25%)</td>
<td></td>
<td>$5,000</td>
<td></td>
</tr>
<tr>
<td>Fit end & weld (15%)</td>
<td></td>
<td>$3,450</td>
<td></td>
</tr>
<tr>
<td>Fit nozzles & weld (30%)</td>
<td></td>
<td>$6,000</td>
<td></td>
</tr>
<tr>
<td>Fit closing end & weld (20%)</td>
<td></td>
<td>$4,600</td>
<td></td>
</tr>
<tr>
<td>Roll & leg & weld (10%)</td>
<td></td>
<td>$2,300</td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td>$2,500</td>
<td></td>
</tr>
<tr>
<td>Paint & Dispatch</td>
<td></td>
<td>$3,000</td>
<td></td>
</tr>
<tr>
<td>Delivery to Painter</td>
<td></td>
<td>$1,000</td>
<td></td>
</tr>
<tr>
<td>Paint</td>
<td></td>
<td>$5,000</td>
<td></td>
</tr>
<tr>
<td>Delivery to Site</td>
<td></td>
<td>$1,000</td>
<td></td>
</tr>
<tr>
<td>Fortnightly Planned Value (PV)</td>
<td></td>
<td>$102,675</td>
<td></td>
</tr>
<tr>
<td>Performance Measurement Baseline (PMB)</td>
<td></td>
<td>$107,500</td>
<td></td>
</tr>
<tr>
<td>Actual Labour Cost</td>
<td></td>
<td>$24,675</td>
<td></td>
</tr>
<tr>
<td>Actual Material Cost</td>
<td></td>
<td>$78,000</td>
<td></td>
</tr>
<tr>
<td>Earned Value (EV)</td>
<td></td>
<td>$107,500</td>
<td></td>
</tr>
<tr>
<td>Reporting date for the period</td>
<td></td>
<td>$102,675</td>
<td></td>
</tr>
</tbody>
</table>

PV values are added to EV when they occur

Actual cost and when they occur are added

PV’s from the BAC are assigned a time interval according to the schedule, e.g.;
- Engineering – Acceptance week 6
- Material Delivery – Heads week 4
Cumulative Performance

<table>
<thead>
<tr>
<th>Tracking Tools</th>
<th>Project Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Planned Value (PV)</td>
<td>$0</td>
</tr>
<tr>
<td>Earned Value (EV)</td>
<td>$0</td>
</tr>
<tr>
<td>Actual Value (AC)</td>
<td>$0</td>
</tr>
</tbody>
</table>

Earned Value & Earned Schedule Performance Measurements

<table>
<thead>
<tr>
<th>Measurement Tools</th>
<th>Project Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Cost Variance (CV = EV - AC)</td>
<td>$0</td>
</tr>
<tr>
<td>Schedule Variance (SV = EV - PV)</td>
<td>$0</td>
</tr>
<tr>
<td>Earned Schedule Actual Time (AT)</td>
<td>0</td>
</tr>
<tr>
<td>Whole Time Increment of PMB (C = AT for EV ≥ PV)</td>
<td>0</td>
</tr>
<tr>
<td>Numerator portion of PMB increment earned (IN = (EVAT - PV)C)</td>
<td>$0</td>
</tr>
<tr>
<td>Denominator portion of PMB increment earned (ID = (PV C+1 - PV)C)</td>
<td>$1,500</td>
</tr>
<tr>
<td>Earned Schedule (ES = C + IN/ID)</td>
<td>0.00</td>
</tr>
<tr>
<td>Schedule Variance (time) (SV(t) = ES - AT)</td>
<td>0.00</td>
</tr>
<tr>
<td>Schedule Performance Index (time), (SPI(t) = ES/AT)</td>
<td>1.00</td>
</tr>
</tbody>
</table>
SV(t) Curve sensitivity for short duration / time scales needs consideration when reporting to client.
Applying EV - Lessons

- Baseline scheduling & TPB need accuracy
- Errors in these drivers will be displayed as delays or early finish dates by the indicators
- Balance between effort & the benefits
- For small projects (where scope is tangible) a gut feeling needs to be applied until the systems response is understood
- When is the curve showing a trend – Statistical analysis / filtering curve response over time?
References

Earned Schedule – Background

- Official Earned Schedule (ES) web site is found at; www.earnedschedule.com
- ES concept was conceived during the summer of 2002
- Publicly introduced it in March 2003 with ‘The Measurable News’ article, ‘Schedule is Different’
- Interest has grown in the method which has seen it expand into areas of:
 - Application of statistical methods to improve forecasting
 - Schedule adherence measures relating to EVM’s connection to the network schedule
Walt Lipke
- Developed the Earned Schedule© method
- Professional engineer with a Master’ degree in Physics & Graduate of the US Department of Defense course for Program Managers
- Recently retired deputy chief of the Software Division at the Oklahoma City Air Logistics Centre
- Recently published a book tilted ‘Earned Schedule’

Kim Henderson
- Actively involved with Walt Lipke in the testing and promotion of ES
- He is Sydney based IT professional
- Provided some initial information for the research project noted in slides 4 & 5
- Master of Science in computing from UTS
Supp 3 - Data for Theory Curves

Working for Earned Value & Earned Schedule Sample - Slides 13 to 16

<table>
<thead>
<tr>
<th>Curves</th>
<th>EV Curve Data ($k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Value (PV)</td>
<td>$0</td>
</tr>
<tr>
<td>Earned Value (EV)</td>
<td>$0</td>
</tr>
<tr>
<td>Actual Cost (AC)</td>
<td>$0</td>
</tr>
<tr>
<td>Time Increments</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ES Inputs</th>
<th>Calculation for ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Time (AT)</td>
<td></td>
</tr>
<tr>
<td>0 1 2 3 4 5 6 7 8</td>
<td></td>
</tr>
<tr>
<td>C = Whole time increment of PMB for condition EV>=PV</td>
<td></td>
</tr>
<tr>
<td>0 0 1 2 2 3 3 3 6</td>
<td></td>
</tr>
<tr>
<td>Numerator portion of PMB</td>
<td></td>
</tr>
<tr>
<td>0 50 100 100 400 100 150 200 0</td>
<td></td>
</tr>
<tr>
<td>Denominator portion of PMB</td>
<td></td>
</tr>
<tr>
<td>150 150 350 600 600 250 250 -1,500</td>
<td></td>
</tr>
<tr>
<td>ES = C + IN/ID</td>
<td></td>
</tr>
<tr>
<td>0.00 0.33 1.29 2.17 2.67 3.40 3.60 3.80 6.00</td>
<td></td>
</tr>
<tr>
<td>SV = ES – AT</td>
<td></td>
</tr>
<tr>
<td>0.00 -0.67 -0.71 -0.83 -1.33 -1.60 -2.40 -3.20 -2.00</td>
<td></td>
</tr>
<tr>
<td>SPI = ES/AT</td>
<td></td>
</tr>
<tr>
<td>0 0.33 0.64 0.72 0.67 0.68 0.60 0.54 0.75</td>
<td></td>
</tr>
<tr>
<td>Sum ES = SV = AT</td>
<td></td>
</tr>
<tr>
<td>0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00</td>
<td></td>
</tr>
<tr>
<td>Check of ES & SV</td>
<td></td>
</tr>
<tr>
<td>0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00</td>
<td></td>
</tr>
</tbody>
</table>
Thankyou for your Attention

L&A Pressure Welding Pty Ltd